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Abstract

Soil and water are critical natural resources underpinning agricultural
productivity and ecological sustainability, particularly in monsoon-dominated
regions such as the Nagavali River basin in eastern India. Effective estimation of
runoff additionally and sediment yield hand in hand is essential for workable
watershed planning, hydraulic structure design, and sediment management, yet
remains evergreen challenging due to the stochastic and nonlinear nature of
hydrological processes. The Artificial Neural Network (ANN) and Adaptive
Neuro-Fuzzy Inference System (ANFIS), two data-driven soft computing
techniques, are assessed in this study in conjunction with Multiple Linear
Regression (MLR) and Sediment Rating Curve (SRC) methods for modeling daily
stage-discharge and runoff-sediment relationships. The Water Resources
Information System (WRIS) provided monsoon-season stage, discharge, and
suspended sediment content data for a total of twelve years (2001-2012), with
2001-2009 used for training and 2010-2012 for testing. While ANFIS models used
Gaussian and triangular membership functions with hybrid learning, ANN
models used feed-forward back-propagation with Levenberg-Marquardt
optimization. RMSE, correlation coefficient (r), coefficient of efficiency (CE), and
pooled average relative error (PARE) were applyed to evaluate the model's
performance. Results indicate that soft-computing models outperform traditional
approaches for both runoff and sediment prediction. ANFIS with triangular
membership functions demonstrated the highest accuracy, followed by double-
hidden-layer ANN. MLR provided acceptable results, whereas SRC exhibited
limited capability due to pronounced nonlinearity in sediment-runoff dynamics.
Antecedent flow and sediment conditions (up to three- models day lag)
significantly influenced current-day discharge and sediment yield. Overall, ANFIS
and ANN proved to be robust, efficient, and reliable tools for hydrological
forecasting in the Nagavali basin, highlighting their potential for adoption in
similar tropical catchments to enhance sediment-runoff prediction and support
sustainable watershed management.

Keywords: Artificial neural network: Adaptive neuro-fuzzy inference system,
Runoff-sediment modelling, Stage—discharge relationship, Nagavali river basin.
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Introduction

Soil and water are two essentially important natural
resources that form the foundation of agricultural
productivity and ecosystem stability. With the growing

population and increasing pressure on water resources,
the judicious and efficient utilization of land and water
has become indispensable for sustainable development.
Runoff serves as the primary driving force behind the
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detachment and transportation of soil particles, thereby
accelerating the processes of soil erosion and sediment
generation. The eroded and dissolved soil material
transported through surface flow ultimately enters the
stream network and is collectively referred to as
sediment yield from the catchment. Sedimentation, as a
cumulative and aggravated process, can cause severe
and often irreversible damages to hydraulic structures.
It leads to the accumulation of sediments behind
reservoirs and barriers, a consequent reduction in
storage capacity, increased maintenance costs for
irrigation canals, and even damage to ports, coasts, and
other water infrastructure. Therefore, accurate and
precise estimation of runoff and eventual sediment
yield is crucial for effective watershed management and
design of water resource structures.

Several empirical and conclusive data-driven pattern
have developed several models to estimate runoff rates
and sediment transport processes. Among them, the
stage—discharge relationship provides a simple, cost-
effective, and reliable technique for discharge
estimation when properly calibrated. Such rating
curves and modeling approaches are essential tools in
hydrological analysis, sediment management, and
catchment-scale planning. Over the decades, a reckless
wide range of models have been evolved and studied,
broadly categorized as conceptual and concise models,
which is physically based models, and data-driven
models. Physically based and conceptual models
simulate watershed processes by representing physical
laws and empirical relationships, whereas data-driven
models focus on learning statistical or computational
relationships directly from observed input-output
datasets, without explicitly describing the underlying
physical processes. Such models are particularly
advantageous when detailed process information is
limited or when data are complex and nonlinear.

The ANN, ANFIS and FL models are examples of data-
driven methods that have shown great promise for
simulating dynamic and nonlinear hydrological
processes. These models are capable of extracting
hidden patterns from hydrological time series data and
establishing robust predictive relationships between
rainfall, runoff, and sediment yield. Their key
advantage and significance lies in their ability to self-
organize and adaptively learn the underlying system
behavior without requiring prior knowledge of explicit
functional forms. Earlier studies, such as that of
Sudheer et al. (2002), reported that ANN models
provided superior performance compared to

traditional empirical equations in estimating sediment
concentration. The ANFIS combines and reconciles the
advantages of both methods into a single framework by
fusing the reasoning and interpretability of fuzzy logic
with the learning powers of meshy neural networks.
ANFIS, which is based on the TSK and fuzzy inference
system (Loukas, 2001), uses a hybrid and advanced
learning approach that combines or recapitulates back-
propagation and least-mean-square
optimization techniques with language rules from
fuzzy logic. Because of this, it can effectively record
intricate nonlinear interactions. Simultaneously, a
traditional yet powerful statistical method for
modelling and portraying the combined effects of
several explanatory variables and a specific dependent
variable is MLR.

even are

MLR has been extensively used in hydrological
applications for predicting flow, sediment, and water
quality parameters based on available datasets. The
uses of ANN, ANFIS, and MLR provides a
comprehensive comparative framework for modeling
and forecasting hydrological responses, particularly for
runoff and sediment yield prediction in diverse
watershed conditions. Several researchers have
modelled runoff using ANN model (Bhattacharyaet al.,
2005; Raghuwanshi et al., 2006; Agarwal et al., 2009;
Nourani, 2009; Bisht et al., 2010; Kisi et al., 2004; Bharti
et al., 2017). Neuro-fuzzy models have also been used
to forecast river flow, sediment rating curve and inflow
(Shafie et al., 2007; Cobaner et al., 2009; Firat et al., 2010;
Chang and Tsai, 2016). Eisazadeh et al. (2013) analysed
the application of multiple linear regression (MLR) and
neural network (NN) methods for calculating sediment
yield. Patil and Valunjkar (2014) used a multilayer
perceptron (MLP) for the Gunjwani watershed in the
Bhima sub-basin of Maharashtra, India, to forecast
next-day runoff.

In order to calculate the daily (SSC) at the Tekra
gauging site on the Pranhita River, a significant
tributary (branch) of the Godavari basin in Andhra
Pradesh, India, Malik et al. (2017) created a set of
computational models (approaches). MLR, MNLR,
SRC, MLPNN and CANFIS were all built (developed)
and tested in this analysis. The study used historical
data from the Nagavali River to examine the
effectiveness of various data-driven (machine-based)
and statistical methodologies (techniques) for
calculating discharge and SSC. ANN, ANFIS, MLR and
SRC were among the models that were examined,
offering useful benchmarks (comparisons) for sediment
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prediction.

To appraise the performance of these models, statistical
metrics, including (RMSE), (1), coefficient of efficiency
CE and PARE, are deployed. The overarching objective
is to generate stage—discharge models utilizing ANN,
ANFIS, and MLR for the Nagavali River basin,
alongside the development of runoff-sediment models
involving ANN, ANFIS, MLR, and SRC methods.
Following the formulation, the models undergo
validation against observed hydrological data, with
their performance assessed through comparative
analysis to determine the most effective and precise
approach for discharge and sediment estimation in the
study region.

Materials and Methods

Description of the Study Area

The Nagavali river basin is a medium-sized, that flows
eastward situated in peninsular India, with significant
ecological and geographical relevance. It spans an area
of 4,462 km? in Odisha and 5,048 km? in Andhra
Pradesh, showcasing its interstate importance. The
river has its source in the Eastern Ghats, specifically
close to Lakhbahal in the district Odisha of Kalahandi,
at a height of approximately 1,300 meters. Flowing
towards the east, it gets in Andhra Pradesh near the
Parvathipuram mandal in the Srikakulam district, and
concludes its journey by discharge into the Bay of
Bengal, which is located near Mahfuzbandar in the
same district. In terms of its geographical positioning,
the Nagavali river basin is surrounded by other
significant water bodies, including the Godavari River
to the west and the Bay of Bengal to the east, indicating
its integration into the larger hydrological framework
of the region. The Champavathi and Peddagedda
rivers define the southern boundary, while the
Vamsadhara and Mahanadi rivers border the north.
The Nagavali river basin is a crucial part of the local
ecology and hydrology because of its complex
hydrographic setting.

The research area drains parts of Andhra Pradesh's
Srikakulam, Vijayanagaram, and Visakhapatnam
districts as well as Orissa's Kalahandi, Rayagada, and
Koraput districts. The examined stretch is roughly 256
kilometers long, and the catchment area is 9510 square
kilometers in total. Orissa and Andhra Pradesh, two
Indian states, make up the majority of the watershed
covered by the geographic area described in the paper.
It states that the watershed's first 161 kilometers are in
Orissa, and the others are in Andhra Pradesh. Barha,

Baldiya, Satklnala, Sitagurha, Srikona, Janjhvati,
Gumidigedda, Vottigedda, Suvarnamukhi, Vonigedda,
Vagavathi, and Relligedda are among the notable
streams that contribute to this watershed. The
hydrological characteristics and significance of these
tributaries in the entire watershed system are
highlighted in this data. Geographically, the region is
located between latitudes 18° 10" and 19° 44' N and
longitudes 82° 52' and 84° 05' E. Figure 1 shows the
precise location.

With three different seasons —summer (March to May),
monsoon (June to September), post-monsoon (October
to November), and winter (December to February)—
the Nagavali river basin has a tropical wet climate. The
typical yearly rainfall in this basin is 1131 mm. The
South-West monsoon has a major effect on this region,
bringing heavy rainfall that enhances the region's
general climate. Summertime temperatures can be as
high as 37 °C and as low as 25 °C. On the other hand,
temperatures drop throughout the winter, with highs
of 20 °C and lows of 14 °C. Around 96% of the total soil
coverage in the research region is made up of a variety
of soil types, such as sandy loams, loamy soils, and red
soils. The region has a variety of classes of wastelands
in addition to these soil types, including gullied lands,
salt-affected zones, degraded pastures, shrub-
dominated lands, waterlogged and marshy lands,
barren rocky regions and mining and industrial
wastelands. Additionally, 68,641 hectares, or 12% of the
basin's total area, are covered by forests.

Data Acquisition and Analysis

The Water Resources Information System of India
provided Hydrological information on stage,
discharge, and suspended sediment every day content
throughout the monsoon season, which ran from June
1 to September 30, 2001 to 2012. Stage graphs produced
by an automatic water stage recorder were used to
calculate the stage, which was measured in meters, and
the discharge, which was recorded in cubic meters per
second (m?s). A 1-liter water sampler was used to
measure the sediment load, which was represented in
g/l as the total suspended sediment content. For
analysis, the complete dataset covering the 12-year
monsoon season has been split into two separate sets.

In this investigation, sediment, discharge, and stage
data from 2001 to 2009 were employed to calibrate
(train) the models. Data from 2010 to 2012 were used to
verify (test) the developed models. In particular, 25% of
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the data from 2001 to 2009 was set aside for validation
throughout the testing phase, and the remaining 75%
was used for model calibration.
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Fig. 1 The study area's location
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Artificial Neural Networks (ANNs)

A computational model created to mimic parts of the
human brain, especially its learning processes, is called
an ANNs. These networks are made up of linked
artificial neurons that exchange messages with one
another. The neural network can adapt to various
inputs and learn from them over time because the
connections between these neurons are linked to
numerical weights that may be changed by experience.
A crucial feature that enables artificial neural networks
to enhance their performance based on prior
knowledge and data is this flexibility. All things
considered, they play a crucial role in machine learning
by simulating how the human brain functions to
promote learning.

A "learning rule" that modifies the connection weights
in response to the input patterns it receives is how the
ANN functions. The main purpose of ANNs, which are
is formed by several tightly connected, nonlinear
operational units called neurons, is to map input sets to
output sets. Incoming signals are amplified by
predetermined weights throughout this phase before
being sent to the neurons. These signals are combined
(summed) at the neuron level to provide the net input,
which is further processed by an activation function to
generate the final output. This methodical technique
demonstrates the fundamental ideas of artificial

intelligence and machine learning by enabling the ANN
to handle information efficiently and change over time.

The neuron then passes the net input through an
activation function f(), which computes the final output
y of the node as,

y = f(net) ()
A neuron's activation level can be converted into an output
using the activation function, also known as the transfer
function. Every neuron has an activation function that
controls how it responds to different stimuli. The most
common kind used in neural networks is the log sigmoid
function. This function effectively achieves a balance
between linear and nonlinear behavior and is described as
strictly rising. It is especially well-suited for multilayer
networks that use the back-propagation technique for
training because of its differentiable character, which
enables efficient learning and optimization within these
models.

The log sigmoid function is defined as,

f(net) = ﬁ ... (2)
The step activation function and the log sigmoid
activation function are similar, but the log sigmoid
activation function adds another area of uncertainty.
one or more hidden layers an input layer, an output
layer and positioned in between are the several layers
of neurons that make up a multilayer feed-forward
network. Through connections that are determined by
particular weights, each of these layers is tightly
connected to the layer before it. This structure is
demonstrated in Fig. 2. which shows a network with a
single hidden layer and highlights the fundamental
architecture and connectivity present in such neural
network designs.

Among the most crucial stages in creating an (ANN)
model is training its weight matrix. Supervised learning
and unsupervised learning are the two main categories
of learning algorithms that can be used to complete this
training process. Supervised learning enables
immediate feedback and correction throughout the
learning process by training the network using a
predetermined set of input patterns and their
corresponding known output patterns. Unsupervised
learning, on the other hand, doesn't require an outside
teacher. In this paradigm, the ANN relies on its capacity
to find correlations without explicit feedback or
instruction in order to automatically recognize patterns
and regularities within the input data. The system can
develop its own understanding based on the intrinsic

www.jweam.in

Y


http://www.jweam.in/

Journal of Water Engineering and Management,

Volume 05, No 02, 2024

structure of the input space thanks to this learning
autonomy.

| L QOutput Layer

et >

Hidden Layer

Input Layer ’
Fig. 2 Multilayer artificial neural network

Neural networks are distinguished by their learning
algorithms, the most common of which is supervised
learning. Reinforcement learning works best in pattern
classification tasks, in contrast to unsupervised
learning, which doesn’t possess the paired input-
output data required to train the networks efficiently.
Supervised learning techniques are very good at
solving time series forecasting problems since they
require both inputs and appropriate outputs for
network training. The Levenberg-Marquardt learning
algorithm, that is described in the following sections, is
especially used in this study.

Levenberg-Marquardt

In 1994, Hagan and Menhaj presented the Levenberg-
Marquardt algorithm (LM), a sophisticated higher-
order adaptive technique for neural network training
that aims to minimize the mean square error (MSE).
This algorithm belongs to the group of learning
strategies = known as  pseudo  second-order
approaches.The  Levenberg-Marquardt approach
improves weight adjustment by combining gradient
and curvature information of the error surface, in
contrast to typical gradient descent algorithms that
only use a local essessment of the performance surface's
slope. This dual strategy makes it easier to find the best
weight combinations, which eventually improves
neural network training performance. Because of this
dual consideration, the LM method can traverse the
weight space more effectively, leading to faster
convergence and better neural network training results.

The Levenberg-Marquardt (LM) approach's ability to

transition to gradient search techniques when the
performance surface's local curvature deviates from a
parabolic shape—a scenario that frequently arises in
neural computing tasks—is one of its main advantages.
According to Ham and Kostanic (2001), the training of
the Multilayer Perceptron (MLP) must be framed as a
nonlinear optimization problem in order to execute the
LM algorithm. However, a major drawback of the LM
approach is the high computing load needed for matrix
inversion, particularly when working with a large
number of variables —often thousands. When trying to
train neural networks effectively, this intricacy can
provide difficulties.

1
Wi =W W, —(JJJk +,U|) Jo 0

In this case, the algorithm's behavior during training is
largely dependent on the parameter u. The algorithm
functions according to the LM (Levenberg-Marquardt)
approach, which is used to effectively solve non-linear
least squares problems, when p is set to 0. On the other
hand, the algorithm changes to function more like the
steepest descent method when the value of u climbs
considerably. This change implies that the algorithm
modifies its strategy according to the particular value
of , affecting its efficiency and computing approach in
optimization jobs.

Adaptive Neuro-Fuzzy Inference System
(ANFIS)

An (ANFIS) is a sophisticated artificial intelligence
model that synthesizes elements from both (ANN)
and(FL). Introduced by Jang in 1993, ANFIS has
significantly = impacted various applications,
particularly in modeling hydrological processes.
One of the primary advantages of (FL) within this
system is its capability to transform qualitative
knowledge and subjective human observations into
quantitatively precise analyses. Despite these
strengths, ANFIS encounters challenges that stem
largely from fuzzy logic itself. A critical limitation
is the lack of a clear methodology to effectively
convert human thought processes into a structured
rule-based  fuzzy inference system  (FIS).
Additionally, the adjustment of membership
functions (MFs)—integral components of fuzzy
logic—can be a labor-intensive and time-consuming
process, complicating the practical implementation
of the system.

The Takagi-Sugeno type fuzzy (FIS), on which ANFIS
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is based, expresses each rule's output as a the input
variables are combined linearly with a constant term.
The total output of the system is derived from the
average weighted of the outputs from each rule,
allowing for greater versatility in modeling complex
relationships. To illustrate, consider a simplified
scenario with two inputs, denoted as x and y, and a
single output, represented as f. A typical first-order
Takagi-Sugeno fuzzy model might include two
basic fuzzy if-then rules, serving to simplify the
modeling process while retaining the essential
characteristics of both ANN and FL. Overall, ANFIS
stands at the intersection of these two domains,
offering promising enhancements in the modeling
and analysis of intricate systems.
Rule 1: if x is A1 and y is B, then fi1 = aix + biy + a1

.. (4)
Rule 2: if x is A2 and y is Bz, then f2 = axx + bay + c2

.. (5)
where the output functions' parameters are al, b1, cl,
and a2, b2, c2, and the membership functions for inputs
x and y are Al, A2, B1, and B2. The ANFIS architecture
is divided into five layers. A fixed node is present in the
other layers, but an adaptive node is present in the first
and fourth layers. Here is a quick summary of each
layer:

Multiple Linear Regression (MLR)

A well-known technique for hydrological prediction,
the regression model can be applied to two or more
variables that are systematically related by a linear
connection. In this work, hydrological parameters like
runoff and silt concentration were estimated using
(MLR) analysis on the same data set. The following is
the expression for the regression equation that was
used:

Y =6, + X + SoX, +.o+ BX, ... (6)

in which Po is an intercept, (31, 32, Bnare constants and
x1, X2 and xn are independent variables. It follows that
each independent variable is assumed to have an
additive effect on Y and to be linearly related to Y.

Sediment Rating Curve (SRC)

When sampling procedures are insufficient to
adequately capture the continuous sediment
concentration record, (SRC) are used to estimate
suspended sediment loads. these curves are typically
defined using a power function that links water and
sediment discharge over long stretches of time, usually

more than ten years. The crucial connection between
sediment concentration or load and discharge can be
represented  mathematically, underscoring the
importance of long-term data in evaluating sediment
transport dynamics.

S, =aQ’ )

Where St is the suspended sediment load at time t, Qt is
the discharge at time t, and a and b are regression
constant

Development of Models

In this investigation, the writers aim to forecast runoff
and suspended sediment concentration by developing
and implementing various predictive models,
including (ANN), (ANFIS) and (MLR). The dataset
utilized comprises daily stage, discharge, and
suspended sediment concentration measurements
collected over a twelve-year duration, specifically
during the monsoon season from June 1, 2001, to
September 30, 2012. The analysis involved the use of
MATLAB (R2015a) for constructing the ANN and
ANFIS models, while Microsoft Excel 2010 was
employed for performing the regression analysis. The
primary focus was on creating effective daily runoff
prediction models based on daily stage (H) and
discharge (Q) data collected during the monsoon
periods within the specified timeframe. To develop
these runoff prediction models, various input
combinations were explored, including the current
day's stage, stages from the previous one to three days,
and runoff values from the previous one to two days,
with the current day’s runoff serving as the output
variable. The resulting model can be expressed in terms
of these inputs and outputs, allowing for accurate
predictions of runoff based on historical data.

Q: = f (Hy, Het, He2, Hes, Qe1, Qr2,) ... (8)

The variables H and Q, which stand for the stage at
times t, t-1, t-2, and t-3 and runoff at times t, t-1, and t-
2, are defined in the given text. The stage and runoff
training data's patterns serve as the foundation for the
function "f," which links these variables. The minimum
and maximum values of the model's inputs, which are
restricted to a specific range, fluctuate greatly
depending on the variables. The input data were
standardized to a common scale to make sure that no
single variable unduly affects the model's output. In
particular, a particular normalization algorithm was
used to standardize the stage and runoff data between
Oand 1.
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y =S Y o
norm
Ymax ~ Ymin

In sediment concentration prediction, the challenge lies
in the complexity of the factors influencing the
suspended sediment concentration on a given day. Key
variables include Rainfall patterns, runoff, soil
properties, and vegetation, all of which necessitate
careful consideration of time lags for accurate
modeling. The methodology for developing predictive
models involves utilizing various combinations of
runoff data from both the present and the past several
days—specifically runoff over the past one, two, and
three days—as well as sediment concentration values
from the previous one, two, and three days. This
comprehensive approach aims to accurately output the
current day's sediment concentration, highlighting the
interconnected nature of hydrological processes in
sediment transport. The formulation incorporates the
input data's upper and lower bounds to normalize the
variables, enhancing the model's predictive capability.

Se=1 (Qy, Qe1, Qr2, Qrs, Se1, St2, St3) ... (10)
where St is the concentration of sediment at time t, t-1,
t-2, and t-3, and Qt is the runoff.

Table 1 Specifics of the MLR model for SSC and runoff
forecasts

Model Output-Input variables

MLR-I Qt = a1+ biHt+ ciHer + diHe2 + ertHes +
(Runoff) £1Qe1+ 2102

MLR-II St = a2+ b2Qt + 2Qe1 + d2Qr2 + e2Qrs+
(55C) £25¢1 + gaSa+ haSes

In this document, the concept of (MLR) is presented
through two models: MLR-I and MLR-II, which analyze
the relationship between discharge and sediment levels
over specified time periods. MLR-I utilizes input
variables from current and previous days' stages, as
well as discharges from prior days, to predict the
current day's discharge. Specifically, the input variables
for MLR-I include the discharge measurements from
today, yesterday, two days ago, and three days ago, in
addition to discharge values from the preceding one
and two days, with the current day's discharge serving
as the output. Conversely, MLR-II focuses on sediment
levels, defining its output variable as the current day's
sediment level. The input variables for this model
encompass the current day's discharge, sediment levels
from the current and previous days, and sediment
values from the prior three days. This model similarly

correlates the sediment levels to discharges observed
over comparable time frames.

To support the training and evaluating MLR, ANN, and
ANFIS, a daily stage time series dataset is utilized. This
dataset is structured with parameters Hij indexed by
year (i =1 to M) and day (j = 1 to N), where M
symbolizes the total number of years and N the total
number of days during the monsoon season. The
detailed temporal arrangement of the dataset is critical
for effectively capturing the underlying patterns in the
observed discharge and sediment data. Likewise, the
necessary daily runoff time series Qij, wherei =1 to M
and j =1 to N, were likewise accessible. N = 122 days
(June 1st to September 30th) in a year and M = 12 years
(2001-2012) were discovered for the Srikakulam
location's Nagavali river basin. The necessary time
series data for suspended sediment content and daily
discharge were accessible. For the Nagavali river basin,
it was found that M = 12 years (2001-2012) and N =122
days (June 1-September 30) every year. Neural
networks with single and double hidden layers, which
are ideally suited for nonlinear regression, were trained
for the minimal error function using the back-
propagation technique. The quantity of neurons in
every hidden layer varies depending on the ANN's
structure and how well they converge to the intended
result. Table 2 enumerates the training variables for the
ANN model along with their assigned values.

Table 2 Training variables and the values assigned to
them for ANN
Variables for training

Assigned values
Feed forward back-

Neural network type propagation
Quantity of input 6

Quantity of output 1

Quantity of hidden 192

layers ’

Quantlty of neurons in 1to 55
hidden layer

Total Quantity of layers | 3, 4

Training function

Levenberg-Marquardt

Transfer function in

hidden layer Sigmoid

Transfer function in .
Pureline

output layer

Maximum epoch 1000

A variety of membership functions, such as triangular,
trapezoidal, generalized bell, and Gaussian types, are
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used by the (ANFIS). There are two to three different
inputs for each function. A fuzzy model of the Takagi-
Sugeno-Kang type is used in the study, and training
was done across 30 epochs the algorithm for back-
propagation learning is utilized to evaluate the
effectiveness of model training. Using both training and
testing datasets, statistical indicators were used to
forecast runoff and suspended sediment concentration
in the research area in order to assess model
performance. Table 3 provides specific training
variables for the ANFIS architecture along with their
assigned values.

Table 3 Training variables and the ANFIS models'
assigned values

Training variables Assigned values

Input membership | ‘trimf’, ‘trapmf’,
function type ‘gbellmf’ and ‘gussmf’
Members?up function 2103

based on input

Fuzzy model type Takagi Sugeno

Epochs 30

Learning algorithm Back-propagation

Results and Discussion

ANNs Based Runoff and (SSC) Prediction
Models

The Gamma test is utilized to establish the input
parameters necessary for modeling runoff-sediment
and stage-discharge, while eliminating models that
increase complexity without significant changes to
results. By employing the Gamma test, one can predict
the minimum modeling error in advance. A data-
splitting technique facilitated the evaluation of the test's
attributes, allowing for optimal input vector selection
based on minimum gamma values, standard error, and
V-ratio. Additionally, the research delved into optimal
model selection and analyzed various input
combinations to assess their effects on simulating
runoff and (SSC).

A systematic evaluation of 2n-1 meaningful
combinations of inputs was conducted to identify the
best prediction models for runoff and SSC, through
analysis based on gamma, standard error, and V-ratio.
In total, seven input parameters were included in the
runoff prediction model: today's stage (Ht), along with
the stages and runoff values from the previous three
days (Ht-1, Ht-2, Ht-3, Qt-1, Qt-2, Qt-3). Similarly, the
SSC prediction model considered runoff values from

today and the preceding three days (Qt, Qt-1, Qt-2, Qt-
3), in conjunction with sediment values from the prior
three days (St-1, St-2, S5t-3). The study ultimately
examined 127 combinations for both models, finding
that the optimal parameters for runoff prediction
involved today's stage and the last two days of runoff,
while the best parameters for SSC prediction
incorporated today's runoff and sediment values from
the previous two days. The models were implemented
using (ANNSs) designed in MATLAB (R2015a) to
facilitate both runoff and SSC predictions.

The runoff prediction model was structured to include
varied input variables such as today's runoff
measurements and those from the previous three days.
The Levenberg-Marquardt learning algorithm was
applied to both single and double hidden layers,
pureline activation was used in the output layer, and
log-sigmoid activation functions were used in the
hidden layers. The training process was configured for
up to 1000 epochs applying the feed-forward back-
propagation method. Model performance was
evaluated through several statistical and hydrological
metrics, including (RMSE), (r), (CE) and (PARE).
Findings indicated that the architectures of (6-28-1) and
(6-52-52-1) produced outstanding results, exhibiting
superior  correlation (r) and (CE) with a
correspondingly lower RMSE compared to the other
models assessed.

ANN Based SSC Prediction Models

The present study focuses on developing prediction
models for (SSC) and runoff using (ANN) and (ANFIS)
methodologies. For ANN models, inputs consisted of
current and previous three days' runoff and sediment
concentrations. The models employed a log-sigmoid
activation function in hidden layers and a pureline
activation function in the output layer, using the
Levenberg-Marquardt learning algorithm up to 1000
maximum epochs. The evaluation of the ANN
performance relied on hydrological and statistical
indices, namely RMSE, correlation coefficient (1),
coefficient of efficiency (CE), and predictive accuracy
(PARE), identifying networks such as (7-55-1) and (7-
30-30-1) as superior based on higher CE and r values
along with lower RMSE.

Further, ANFIS models were also constructed for the
same outputs, utilizing present and prior day stage,
discharge, and sediment data from the Nagavali river
basin. The Takagi-Sugeno-Kang fuzzy inference system
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was deployed within ANFIS, with an epoch limit of 30

for training optimal network configurations. Inputs for
the ANFIS-based daily runoff prediction included
current and previous three days' stage and runoff data,
calibrated using a variety of membership functions
(triangular, trapezoidal, Gaussian, and generalized
bell), with the model structure confirmed through grid
partitioning. The hybrid learning algorithm was
utilized with an error tolerance of 0.001.

Ultimately, for SSC prediction, similar input
parameters were used, where the best inputs were
identified through a gamma (I') test, and the model
structure was further refined using grid partitioning.
During both methodologies, a parallel emphasis was
placed on statistical performance metrics, leading to the
conclusion that the triangular membership function

with three input partitions exhibited the best
performance for runoff prediction while also
optimizing SSC  predictions effectively.  The
effectiveness of the generated models for predicting
suspended sediment concentration (SSC) was

evaluated using a variety of statistical and hydrological
indices. (RMSE), (r), and (CE) important
measurements. The most successful model for SSC
prediction among the models examined was
Triangular, 3, which showed the highest values for CE
and r along with the lowest RMSE.

were

MLR Based Runoff and SSC Prediction Models

The study utilized the Multiple Linear Regression
(MLR) technique to establish models for predicting
daily runoff. The models incorporated several
variables, including the current day's stage of water
(Ht), the stage from the previous day (Ht-1), and the
stages from the two and three days prior (Ht-2, Ht-3).
Additionally, previous runoff values were considered:
the runoff from the previous day (Qt-1) and the runoff
from two days prior (Qt-2). Through this MLR
approach, the researchers determined the coefficients of
these independent variables the necessary
intercepts, thereby formulating a mathematical
representation that aids in predicting daily runoff
based on historical water stages and runoff levels. This
method underscores the relevance of historical data in
improving predictions for runoff, which is critical for
water resource management and planning.

Qt=al +blHt + cIHt-1 + d1Ht-2 + e1Ht-3 + f1Qt-1 + g1Qt-2 ... (11)
Table 4 displays the runoff prediction model's
regression equation during the training phase.

and

Table 4 MLR model for predicting runoff

Models Model equations

MLR-I
(training)

Qt=-118.021 + 370.8057*Ht - 269.41*Ht-1
- 14.2196*Ht-2
- 11.8504*Ht-3 + 0.6872*Qt-1 + 0.0729*Qt- 2

The creation of an MLR-based SSC model that
combines runoff from the current day with sediment
from the previous one, two, and three days is expressed

as follows:
St = a2 + b2Qt + 2Qt-1 + d2Qt-2 + e2Qt-3+ £25t-1 + g25t-2 + h25t-3
... (12)

Regression equation for MLR based SSC model is
depicted in Table 5 during training period.

Table 5 MLR model for predicting SSC

Models Model equation

MLR-II St = - 276.547 + 384.1661*Qt - 242.319*Qt-

(training) (1 +18.2608*Qt-2 + 13.9898*Qt-3 +
0.6463*St-1 - 0.01939*St-2 - 0.0828*5t-3

The performance evaluation metrics for the runoff and
SSC models that were developed using MLR displays
Table 6.

Table 6 Performance metrics for SSC and MLR-based
runoff models

Model RMSE T CE

MLR-I (runoff) 36.895 0.967 0.931
m3/sec

IMLR-II (sediment) 0.502 g/l 0.835 0.696

SRC-based Prediction Model for SSC

The connection between sediment and river discharge
is discussed in the text, with a particular emphasis on
the impact of river discharge (represented by Qt) on
suspended sediment concentration (SSC). This
relationship was established by a regression study,
which produced a power equation that is expressed as
St = 0.2952 Qt"0.07810. This formula provides a
mathematical representation of how changes in daily
river discharge affect the amount of suspended silt.
Furthermore, Table 7 displays the performance indices
of the SRC model used to predict SSC, demonstrating
the model's efficacy in predicting suspended sediment
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levels based on the established relationship

Table 7 Performance metrics for the SSC model based
on SRC

Model RMSE T CE

SRC 0.733 g/1 0.731 0.620

Performance Evaluation of Developed Models

It has been demonstrated that the ANFIS model
performs better at predicting runoff and SSC than both
ANN and MLR models. Visual observations of the
model's outputs lead to this conclusion. Several
statistical and hydrological metrics, such as the (r),
(RMSE), coefficient of efficiency (CE), and pooled
average relative error (PARE), were used to evaluate
the ANFIS model against its competitors. These metrics
offer a thorough assessment of the models' efficacy and
forecast accuracy in simulating intricate hydrological
processes. For the ANN models predicting runoff,
correlation coefficients during the training period
(2001-2009) ranged from 0.995 for the (6-28-1) network,
with a testing score of 0.979 repeating for the (6-52-52-
1) setup. In terms of SSC predictions, the calibration and
validation phases offered values of r at 0.904 and 0.765
for the (7-55-1) network, while the (7-30-30-1) network
yielded 0.911 and 0.767, respectively.

The study analyzes the performance of various
predictive models, notably the ANFIS, MLR, ANN, and
SRC, in forecasting runoff and SSC. The ANFIS
(Triangular, 3) model demonstrated exceptional
correlation coefficients of 0.997 and 0.988 during
calibration and validation for runoff predictions, with
corresponding r values of 0.941 and 0.779 during SSC
training and testing. Conversely, the MLR-I model
produced lower correlation coefficients of 0.967 for
runoff during training and 0.964 during testing, while
the MLR II model for SSC showed values of 0.835 and
0.832.

In terms of RMSE, the ANFIS model excelled with
values of 17.130 m3/s during calibration and 30.644 m?/s
in validation for runoff predictions, alongside RMSEs
of 0.307 m3/s and 0.113 m?3/s for SSC training and testing
periods, respectively. MLR-I's RMSE values for runoff
were higher, at 36.895 m?%/s during training and 53.063
m?/s during testing, while for MLR-II SSC predictions,
RMSE values were 0.502 m3/s and 0.121 m3/s. The SRC-
based SSC model yielded even lower correlation values,
with RMSEs of 0.733 m?s during training and 0.235
m?/s for testing, indicating poorer predictive

performance.

A critical metric for evaluating these models is the CE.
For the ANN runoff prediction model with network
configuration (6-28-1), CE values were recorded at 0.989
and 0.935 for calibration and validation. In contrast, the
ANFIS runoff model reached CE values of 0.994 and
0.966, while SSC predictions resulting CE values were
lower compared to runoff but still indicative of good
predictive performance at 0.886 and 0.775. In
comparison, MLR-I and II showed CE values of 0.931
and 0.824 for runoff and significantly lower values for
SSC. Another important performance metric utilized
was the PARE. The ANFIS runoff predictions
demonstrated PARE values of 0.001% and 0.018%,
indicating slight over-prediction during training and
testing phases. MLR-I and II models also showed minor
over-prediction tendencies, whereas SRC consistently
yielded negative PARE values, indicating under-
prediction in both capacities. Thus, the results indicate
that the ANFIS model generally outperforms its
counterparts in terms of predictive accuracy and
reliability for both runoff and SSC, evidenced by higher
correlation coefficients, lower RMSE, superior CE
values, and more favorable PARE statistics.

Table 8 Performance assessments of created ANN,
ANFIS, and MLR models for runoff forecasting
throughout training and testing phases

Training Testing
Model RMS| r | CE |[PARRMSE r | CE |PAR
E E |(m3/s E
(m3/s (%) ) (%)

)

ANN (6-28- [22.973]0.99 [0.989/0.141 [39.840/0.979/0.935}-0.994
1) 5

ANN (6-52- 22.565/0.99 0.989/0.113 [42.1520.979/0.941(0.807
52-1) 5

IANFIS 17.1300.99 [0.994(0.001 [30.644/0.988(0.966(0.018
(Triangular, 7

3)

IMLR-I 36.895(0.96 [0.931(0.006 |53.0630.964(0.823(0.117

The models' performance evaluations showed that they
could estimate silt and runoff with sufficient precision.
The ANFIS model performed better in runoff
prediction than the and MLR models, according to the
qualitative evaluation generated from the graphs
comparing observed against anticipated values of daily
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runoff. The ANFIS model outperforms ANN, MLR, and
SRC (Support Vector Regression) models for SSC
prediction, according to the examination of daily SSC
using corresponding scatter plots.

Table 9 Performance assessments of created models
for SSC prediction using ANN, ANFIS, MLR, and SRC
during training and testing

Training Testing
Model
RMS PARERMS PARE
E R [|CE (%) [E r |CE (%)
(g/1) (g/D
IANN (7-55-1) 0.390(0.90 {0.816-0.003(0.171 {0.86 [0.73 -0.130
4 5 b
IANN (7-30-30-0.376 (0.91 {0.829-0.001 0.146 [0.86 [0.74 -0.026
1) 1 8 18
IANFIS 0.307{0.94 (0.886(0.002 [0.113 |0.93 0.77 0.028
(Triangular, 3) 1 0o b
IMLR-IT 0.501{0.83 [0.696(0.003 |0.121 (0.83 0.69 0.027
5 2
SRC 0.733{0.73 (0.620+0.023/0.235 [0.72 [0.60 |-0.147
1 9 88
Conclusions

Soil is a vital natural resource for sustaining land
productivity, particularly in regions dominated by
subsistence agriculture such as the Nagavali River
basin. Understanding sediment transport and runoff
dynamics s for effective watershed
management. Hydrological prediction, however,
remains challenging due to the stochastic nature of
rainfall-runoff and sediment processes. In recent years,
soft-computing techniques have emerged as robust
alternatives to conventional methods, requiring fewer
input data and capable of capturing complex nonlinear
hydrological behaviour. In this study, the researchers
aimed to model daily stage—discharge and runoff-
sediment relationships using various advanced
methodologies, specifically ANN, ANFIS and MLR, in
conjunction with a SRC approach. The research utilized
data over a twelve-year period from 2001 to 2012,
focused on the monsoon season, which included
metrics such as stage, discharge, and suspended
sediment concentration. This data was sourced from
the WRIS and was strategically divided into training
(2001-2009)and testing (2010-2012) datasets.

crucial

The geographical focus of the study was the Nagavali
basin, which spans 9,510 square kilometers across the
states of Odisha (4,462 km?) and Andhra Pradesh (5,048
km?). This basin experiences a mean annual rainfall of
approximately 1131 mm, situated between the latitudes
of 18°10'-19°44' N and longitudes of 82°52'-84°05'E. To
develop the ANN models, a feed-forward back-
propagation method was employed, utilizing
Levenberg-Marquardt training for optimization. In the
case of the ANFIS models, grid partitioning methods
were used along with triangular and Gaussian
membership functions, complemented by a hybrid
training approach. The MLR models were implemented
using Microsoft Excel, while the SRC method adopted
a power-law relationship to correlate runoff and
suspended sediment concentration. The performance of
these models was rigorously evaluated through several
statistical measures, including RMSE, r, CE and PARE,
ensuring a comprehensive assessment of model
accuracy and reliability in predicting sediment
dynamics within the basin.

Key findings

e Soft-computing models produced accurate stage—
discharge and runoff-sediment predictions.

e Double-hidden-layer ANN models performed
better than single-layer networks for both runoff
and SSC.

e ANFIS (Triangular, 3 MFs) achieved the best
performance among all models for both runoff and
SSC estimation.

e MLR models showed acceptable performance,
whereas the SRC method performed poorly for this
basin, reflecting nonlinearity in sediment-runoff
dynamics.

e Current-day runoff and SSC were strongly
dependent on antecedent flow and sediment
conditions (up to three-day lag).

ANFIS and ANN models demonstrated superior
predictive capability over traditional regression and
rating-curve methods, underscoring the effectiveness of
intelligent, data-driven approaches in monsoon-
dominated hydrological basins. These techniques offer
powerful tools for sediment-runoff forecasting and
sustainable watershed management in similar tropical
catchments.
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