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Abstract 

 
Soil and water are critical natural resources underpinning agricultural 

productivity and ecological sustainability, particularly in monsoon-dominated 

regions such as the Nagavali River basin in eastern India. Effective estimation of 

runoff additionally and sediment yield hand in hand is essential for workable 

watershed planning, hydraulic structure design, and sediment management, yet 

remains evergreen challenging due to the stochastic and nonlinear nature of 

hydrological processes. The Artificial Neural Network (ANN) and Adaptive 

Neuro-Fuzzy Inference System (ANFIS), two data-driven soft computing 

techniques, are assessed in this study in conjunction with Multiple Linear 

Regression (MLR) and Sediment Rating Curve (SRC) methods for modeling daily 

stage–discharge and runoff–sediment relationships. The Water Resources 

Information System (WRIS) provided monsoon-season stage, discharge, and 

suspended sediment content data for a total of twelve years (2001–2012), with 

2001–2009 used for training and 2010–2012 for testing. While ANFIS models used 

Gaussian and triangular membership functions with hybrid learning, ANN 

models used feed-forward back-propagation with Levenberg–Marquardt 

optimization. RMSE, correlation coefficient (r), coefficient of efficiency (CE), and 

pooled average relative error (PARE) were applyed to evaluate the model's 

performance. Results indicate that soft-computing models outperform traditional 

approaches for both runoff and sediment prediction. ANFIS with triangular 

membership functions demonstrated the highest accuracy, followed by double-

hidden-layer ANN. MLR provided acceptable results, whereas SRC exhibited 

limited capability due to pronounced nonlinearity in sediment–runoff dynamics. 

Antecedent flow and sediment conditions (up to three- models day lag) 

significantly influenced current-day discharge and sediment yield. Overall, ANFIS 

and ANN proved to be robust, efficient, and reliable tools for hydrological 

forecasting in the Nagavali basin, highlighting their potential for adoption in 

similar tropical catchments to enhance sediment–runoff prediction and support 

sustainable watershed management. 
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Introduction 
Soil and water are two essentially important natural 

resources that form the foundation of agricultural 

productivity and ecosystem stability. With the growing 

population and increasing pressure on water resources, 

the judicious and efficient utilization of land and water 

has become indispensable for sustainable development. 

Runoff serves as the primary driving force behind the 
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detachment and transportation of soil particles, thereby 

accelerating the processes of soil erosion and sediment 

generation. The eroded and dissolved soil material 

transported through surface flow ultimately enters the 

stream network and is collectively referred to as 

sediment yield from the catchment. Sedimentation, as a 

cumulative and aggravated process, can cause severe 

and often irreversible damages to hydraulic structures. 

It leads to the accumulation of sediments behind 

reservoirs and barriers, a consequent reduction in 

storage capacity, increased maintenance costs for 

irrigation canals, and even damage to ports, coasts, and 

other water infrastructure. Therefore, accurate and 

precise estimation of runoff and eventual sediment 

yield is crucial for effective watershed management and 

design of water resource structures. 

 

Several empirical and conclusive data-driven pattern 

have developed several models to estimate runoff rates 

and sediment transport processes. Among them, the 

stage–discharge relationship provides a simple, cost-

effective, and reliable technique for discharge 

estimation when properly calibrated. Such rating 

curves and modeling approaches are essential tools in 

hydrological analysis, sediment management, and 

catchment-scale planning. Over the decades, a reckless 

wide range of models have been evolved and studied, 

broadly categorized as conceptual and concise models, 

which is physically based models, and data-driven 

models. Physically based and conceptual models 

simulate watershed processes by representing physical 

laws and empirical relationships, whereas data-driven 

models focus on learning statistical or computational 

relationships directly from observed input–output 

datasets, without explicitly describing the underlying 

physical processes. Such models are particularly 

advantageous when detailed process information is 

limited or when data are complex and nonlinear. 

 

The ANN, ANFIS and FL models are examples of data-

driven methods that have shown great promise for 

simulating dynamic and nonlinear hydrological 

processes. These models are capable of extracting 

hidden patterns from hydrological time series data and 

establishing robust predictive relationships between 

rainfall, runoff, and sediment yield. Their key 

advantage and significance lies in their ability to self-

organize and adaptively learn the underlying system 

behavior without requiring prior knowledge of explicit 

functional forms. Earlier studies, such as that of 

Sudheer et al. (2002), reported that ANN models 

provided superior performance compared to 

traditional empirical equations in estimating sediment 

concentration. The ANFIS combines and reconciles the 

advantages of both methods into a single framework by 

fusing the reasoning and interpretability of fuzzy logic 

with the learning powers of meshy neural networks. 

ANFIS, which is based on the TSK and fuzzy inference 

system (Loukas, 2001), uses a hybrid and advanced 

learning approach that combines or recapitulates back-

propagation and even are least-mean-square 

optimization techniques with language rules from 

fuzzy logic. Because of this, it can effectively record 

intricate nonlinear interactions. Simultaneously, a 

traditional yet powerful statistical method for 

modelling and portraying the combined effects of 

several explanatory variables and a specific dependent 

variable is MLR. 

 

MLR has been extensively used in hydrological 

applications for predicting flow, sediment, and water 

quality parameters based on available datasets. The 

uses of ANN, ANFIS, and MLR provides a 

comprehensive comparative framework for modeling 

and forecasting hydrological responses, particularly for 

runoff and sediment yield prediction in diverse 

watershed conditions. Several researchers have 

modelled runoff using ANN model (Bhattacharya et al., 

2005; Raghuwanshi et al., 2006; Agarwal et al., 2009; 

Nourani, 2009; Bisht et al., 2010; Kisi et al., 2004; Bharti 

et al., 2017). Neuro-fuzzy models have also been used 

to forecast river flow, sediment rating curve and inflow 

(Shafie et al., 2007; Cobaner et al., 2009; Firat et al., 2010; 

Chang and Tsai, 2016). Eisazadeh et al. (2013) analysed 

the application of multiple linear regression (MLR) and 

neural network (NN) methods for calculating sediment 

yield. Patil and Valunjkar (2014) used a multilayer 

perceptron (MLP) for the Gunjwani watershed in the 

Bhima sub-basin of Maharashtra, India, to forecast 

next-day runoff. 

 

In order to calculate the daily (SSC) at the Tekra 

gauging site on the Pranhita River, a significant 

tributary (branch) of the Godavari basin in Andhra 

Pradesh, India, Malik et al. (2017) created a set of 

computational models (approaches). MLR, MNLR, 

SRC, MLPNN and CANFIS were all built (developed) 

and tested in this analysis. The study used historical 

data from the Nagavali River to examine the 

effectiveness of various data-driven (machine-based) 

and statistical methodologies (techniques) for 

calculating discharge and SSC. ANN, ANFIS, MLR and 

SRC were among the models that were examined, 

offering useful benchmarks (comparisons) for sediment 
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prediction. 

To appraise the performance of these models, statistical 

metrics, including (RMSE), (r), coefficient of efficiency 

CE and PARE, are deployed. The overarching objective 

is to generate stage–discharge models utilizing ANN, 

ANFIS, and MLR for the Nagavali River basin, 

alongside the development of runoff–sediment models 

involving ANN, ANFIS, MLR, and SRC methods. 

Following the formulation, the models undergo 

validation against observed hydrological data, with 

their performance assessed through comparative 

analysis to determine the most effective and precise 

approach for discharge and sediment estimation in the 

study region. 

 

Materials and Methods 
Description of the Study Area 
The Nagavali river basin is a medium-sized, that flows 

eastward situated in peninsular India, with significant 

ecological and geographical relevance. It spans an area 

of 4,462 km² in Odisha and 5,048 km² in Andhra 

Pradesh, showcasing its interstate importance. The 

river has its source in the Eastern Ghats, specifically 

close to Lakhbahal in the district Odisha of Kalahandi, 

at a height of approximately 1,300 meters. Flowing 

towards the east, it gets in Andhra Pradesh near the 

Parvathipuram mandal in the Srikakulam district, and 

concludes its journey by discharge into the Bay of 

Bengal, which is located near Mahfuzbandar in the 

same district. In terms of its geographical positioning, 

the Nagavali river basin is surrounded by other 

significant water bodies, including the Godavari River 

to the west and the Bay of Bengal to the east, indicating 

its integration into the larger hydrological framework 

of the region. The Champavathi and Peddagedda 

rivers define the southern boundary, while the 

Vamsadhara and Mahanadi rivers border the north. 

The Nagavali river basin is a crucial part of the local 

ecology and hydrology because of its complex 

hydrographic setting. 

 

The research area drains parts of Andhra Pradesh's 

Srikakulam, Vijayanagaram, and Visakhapatnam 

districts as well as Orissa's Kalahandi, Rayagada, and 

Koraput districts. The examined stretch is roughly 256 

kilometers long, and the catchment area is 9510 square 

kilometers in total. Orissa and Andhra Pradesh, two 

Indian states, make up the majority of the watershed 

covered by the geographic area described in the paper. 

It states that the watershed's first 161 kilometers are in 

Orissa, and the others are in Andhra Pradesh. Barha, 

Baldiya, Satklnala, Sitagurha, Srikona, Janjhvati, 

Gumidigedda, Vottigedda, Suvarnamukhi, Vonigedda, 

Vagavathi, and Relligedda are among the notable 

streams that contribute to this watershed. The 

hydrological characteristics and significance of these 

tributaries in the entire watershed system are 

highlighted in this data.  Geographically, the region is 

located between latitudes 18° 10' and 19° 44' N and 

longitudes 82° 52' and 84° 05' E. Figure 1 shows the 

precise location. 

 
With three different seasons—summer (March to May), 

monsoon (June to September), post-monsoon (October 

to November), and winter (December to February)—

the Nagavali river basin has a tropical wet climate. The 

typical yearly rainfall in this basin is 1131 mm. The 

South-West monsoon has a major effect on this region, 

bringing heavy rainfall that enhances the region's 

general climate. Summertime temperatures can be as 

high as 37 °C and as low as 25 °C. On the other hand, 

temperatures drop throughout the winter, with highs 

of 20 °C and lows of 14 °C. Around 96% of the total soil 

coverage in the research region is made up of a variety 

of soil types, such as sandy loams, loamy soils, and red 

soils. The region has a variety of classes of wastelands 

in addition to these soil types, including gullied lands, 

salt-affected zones, degraded pastures, shrub-

dominated lands, waterlogged and marshy lands, 

barren rocky regions and mining and industrial 

wastelands. Additionally, 68,641 hectares, or 12% of the 

basin's total area, are covered by forests. 

 

Data Acquisition and Analysis 
The Water Resources Information System of India 

provided Hydrological information on stage, 

discharge, and suspended sediment every day content 

throughout the monsoon season, which ran from June 

1 to September 30, 2001 to 2012. Stage graphs produced 

by an automatic water stage recorder were used to 

calculate the stage, which was measured in meters, and 

the discharge, which was recorded in cubic meters per 

second (m3/s). A 1-liter water sampler was used to 

measure the sediment load, which was represented in 

g/l as the total suspended sediment content. For 

analysis, the complete dataset covering the 12-year 

monsoon season has been split into two separate sets. 

 

In this investigation, sediment, discharge, and stage 

data from 2001 to 2009 were employed to calibrate 

(train) the models. Data from 2010 to 2012 were used to 

verify (test) the developed models. In particular, 25% of 
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the data from 2001 to 2009 was set aside for validation 

throughout the testing phase, and the remaining 75% 

was used for model calibration. 

 

 
Fig. 1 The study area's location 

 

Artificial Neural Networks (ANNs) 
A computational model created to mimic parts of the 

human brain, especially its learning processes, is called 

an ANNs. These networks are made up of linked 

artificial neurons that exchange messages with one 

another. The neural network can adapt to various 

inputs and learn from them over time because the 

connections between these neurons are linked to 

numerical weights that may be changed by experience. 

A crucial feature that enables artificial neural networks 

to enhance their performance based on prior 

knowledge and data is this flexibility. All things 

considered, they play a crucial role in machine learning 

by simulating how the human brain functions to 

promote learning. 

 

A "learning rule" that modifies the connection weights 

in response to the input patterns it receives is how the 

ANN functions. The main purpose of ANNs, which are 

is formed by several tightly connected, nonlinear 

operational units called neurons, is to map input sets to 

output sets. Incoming signals are amplified by 

predetermined weights throughout this phase before 

being sent to the neurons. These signals are combined 

(summed) at the neuron level to provide the net input, 

which is further processed by an activation function to 

generate the final output. This methodical technique 

demonstrates the fundamental ideas of artificial 

intelligence and machine learning by enabling the ANN 

to handle information efficiently and change over time.  

 

The neuron then passes the net input through an 

activation function ƒ(), which computes the final output 

y of the node as,  

 

𝑦 = 𝑓(𝑛𝑒𝑡)                                                                    … (1) 

A neuron's activation level can be converted into an output 

using the activation function, also known as the transfer 

function.  Every neuron has an activation function that 

controls how it responds to different stimuli. The most 

common kind used in neural networks is the log sigmoid 

function. This function effectively achieves a balance 

between linear and nonlinear behavior and is described as 

strictly rising. It is especially well-suited for multilayer 

networks that use the back-propagation technique for 

training because of its differentiable character, which 

enables efficient learning and optimization within these 

models.  

The log sigmoid function is defined as, 

𝑓(𝑛𝑒𝑡) =
1

1+𝑒−𝑛𝑒𝑡
                                                          … (2) 

 

The step activation function and the log sigmoid 

activation function are similar, but the log sigmoid 

activation function adds another area of uncertainty. 

one or more hidden layers an input layer, an output 

layer and positioned in between are the several layers 

of neurons that make up a multilayer feed-forward 

network. Through connections that are determined by 

particular weights, each of these layers is tightly 

connected to the layer before it. This structure is 

demonstrated in Fig. 2. which shows a network with a 

single hidden layer and highlights the fundamental 

architecture and connectivity present in such neural 

network designs. 

 

Among the most crucial stages in creating an (ANN) 

model is training its weight matrix. Supervised learning 

and unsupervised learning are the two main categories 

of learning algorithms that can be used to complete this 

training process. Supervised learning enables 

immediate feedback and correction throughout the 

learning process by training the network using a 

predetermined set of input patterns and their 

corresponding known output patterns. Unsupervised 

learning, on the other hand, doesn't require an outside 

teacher. In this paradigm, the ANN relies on its capacity 

to find correlations without explicit feedback or 

instruction in order to automatically recognize patterns 

and regularities within the input data. The system can 

develop its own understanding based on the intrinsic 
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structure of the input space thanks to this learning 

autonomy. 

 

 
Fig. 2 Multilayer artificial neural network 

 

Neural networks are distinguished by their learning 

algorithms, the most common of which is supervised 

learning. Reinforcement learning works best in pattern 

classification tasks, in contrast to unsupervised 

learning, which doesn’t possess the paired input-

output data required to train the networks efficiently. 

Supervised learning techniques are very good at 

solving time series forecasting problems since they 

require both inputs and appropriate outputs for 

network training. The Levenberg-Marquardt learning 

algorithm, that is described in the following sections, is 

especially used in this study. 

 

Levenberg–Marquardt 
 

In 1994, Hagan and Menhaj presented the Levenberg–

Marquardt algorithm (LM), a sophisticated higher-

order adaptive technique for neural network training 

that aims to minimize the mean square error (MSE). 

This algorithm belongs to the group of learning 

strategies known as pseudo second-order 

approaches.The Levenberg-Marquardt approach 

improves weight adjustment by combining gradient 

and curvature information of the error surface, in 

contrast to typical gradient descent algorithms that 

only use a local essessment of the performance surface's 

slope. This dual strategy makes it easier to find the best 

weight combinations, which eventually improves 

neural network training performance. Because of this 

dual consideration, the LM method can traverse the 

weight space more effectively, leading to faster 

convergence and better neural network training results. 
 

The Levenberg-Marquardt (LM) approach's ability to 

transition to gradient search techniques when the 

performance surface's local curvature deviates from a 

parabolic shape—a scenario that frequently arises in 

neural computing tasks—is one of its main advantages. 

According to Ham and Kostanic (2001), the training of 

the Multilayer Perceptron (MLP) must be framed as a 

nonlinear optimization problem in order to execute the 

LM algorithm. However, a major drawback of the LM 

approach is the high computing load needed for matrix 

inversion, particularly when working with a large 

number of variables—often thousands. When trying to 

train neural networks effectively, this intricacy can 

provide difficulties. 

                               

  T

kk

T

kkkk JIJJWWW
1

11



          … (3) 

 

In this case, the algorithm's behavior during training is 

largely dependent on the parameter µ. The algorithm 

functions according to the LM (Levenberg-Marquardt) 

approach, which is used to effectively solve non-linear 

least squares problems, when µ is set to 0. On the other 

hand, the algorithm changes to function more like the 

steepest descent method when the value of µ climbs 

considerably. This change implies that the algorithm 

modifies its strategy according to the particular value 

of µ, affecting its efficiency and computing approach in 

optimization jobs. 

 

Adaptive Neuro-Fuzzy Inference System 

(ANFIS) 
An (ANFIS) is a sophisticated artificial intelligence 

model that synthesizes elements from both (ANN) 

and(FL). Introduced by Jang in 1993, ANFIS has 

significantly impacted various applications, 

particularly in modeling hydrological processes. 

One of the primary advantages of (FL) within this 

system is its capability to transform qualitative 

knowledge and subjective human observations into 

quantitatively precise analyses.  Despite these 

strengths, ANFIS encounters challenges that stem 

largely from fuzzy logic itself. A critical limitation 

is the lack of a clear methodology to effectively 

convert human thought processes into a structured 

rule-based fuzzy inference system (FIS). 

Additionally, the adjustment of membership 

functions (MFs)—integral components of fuzzy 

logic—can be a labor-intensive and time-consuming 

process, complicating the practical implementation 

of the system.  

 

The Takagi-Sugeno type fuzzy (FIS), on which ANFIS 
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is based, expresses each rule's output as a the input 

variables are combined linearly with a constant term. 

The total output of the system is derived from the 

average weighted of the outputs from each rule, 

allowing for greater versatility in modeling complex 

relationships. To illustrate, consider a simplified 

scenario with two inputs, denoted as x and y, and a 

single output, represented as f. A typical first-order 

Takagi-Sugeno fuzzy model might include two 

basic fuzzy if-then rules, serving to simplify the 

modeling process while retaining the essential 

characteristics of both ANN and FL. Overall, ANFIS 

stands at the intersection of these two domains, 

offering promising enhancements in the modeling 

and analysis of intricate systems. 

Rule 1: if 𝑥 is 𝐴1 and 𝑦 is 𝐵1, then f1 = a1x + b1y + c1                                                                                        

… (4)  

Rule 2: if 𝑥 is 𝐴2 and 𝑦 is 𝐵2, then f2 = a2x + b2y + c2   

                                                                      … (5)  

where the output functions' parameters are a1, b1, c1, 

and a2, b2, c2, and the membership functions for inputs 

x and y are A1, A2, B1, and B2. The ANFIS architecture 

is divided into five layers. A fixed node is present in the 

other layers, but an adaptive node is present in the first 

and fourth layers. Here is a quick summary of each 

layer:  

 

Multiple Linear Regression (MLR) 
A well-known technique for hydrological prediction, 

the regression model can be applied to two or more 

variables that are systematically related by a linear 

connection. In this work, hydrological parameters like 

runoff and silt concentration were estimated using 

(MLR) analysis on the same data set. The following is 

the expression for the regression equation that was 

used: 

                              

nnxxxY   ...22110           … (6) 

 

in which β0 is an intercept, β1, β2,, βn are constants and 

x1, x2 and xn are independent variables. It follows that 

each independent variable is assumed to have an 

additive effect on Y and to be linearly related to Y. 

 

Sediment Rating Curve (SRC) 
When sampling procedures are insufficient to 

adequately capture the continuous sediment 

concentration record, (SRC) are used to estimate 

suspended sediment loads. these curves are typically 

defined using a power function that links water and 

sediment discharge over long stretches of time, usually 

more than ten years. The crucial connection between 

sediment concentration or load and discharge can be 

represented mathematically, underscoring the 

importance of long-term data in evaluating sediment 

transport dynamics. 

                 
  

b

tt QaS 
                              … (7)                                           

Where St is the suspended sediment load at time t, Qt is 

the discharge at time t, and a and b are regression 

constant 

 

Development of Models 
In this investigation, the writers aim to forecast runoff 

and suspended sediment concentration by developing 

and implementing various predictive models, 

including (ANN), (ANFIS) and (MLR). The dataset 

utilized comprises daily stage, discharge, and 

suspended sediment concentration measurements 

collected over a twelve-year duration, specifically 

during the monsoon season from June 1, 2001, to 

September 30, 2012. The analysis involved the use of 

MATLAB (R2015a) for constructing the ANN and 

ANFIS models, while Microsoft Excel 2010 was 

employed for performing the regression analysis. The 

primary focus was on creating effective daily runoff 

prediction models based on daily stage (H) and 

discharge (Q) data collected during the monsoon 

periods within the specified timeframe. To develop 

these runoff prediction models, various input 

combinations were explored, including the current 

day's stage, stages from the previous one to three days, 

and runoff values from the previous one to two days, 

with the current day’s runoff serving as the output 

variable. The resulting model can be expressed in terms 

of these inputs and outputs, allowing for accurate 

predictions of runoff based on historical data. 

Qt = f (Ht, Ht-1, Ht-2, Ht-3, Qt-1, Qt-2,)                             … (8) 

 

The variables H and Q, which stand for the stage at 

times t, t-1, t-2, and t-3 and runoff at times t, t-1, and t-

2, are defined in the given text. The stage and runoff 

training data's patterns serve as the foundation for the 

function "f," which links these variables. The minimum 

and maximum values of the model's inputs, which are 

restricted to a specific range, fluctuate greatly 

depending on the variables. The input data were 

standardized to a common scale to make sure that no 

single variable unduly affects the model's output. In 

particular, a particular normalization algorithm was 

used to standardize the stage and runoff data between 

0 and 1. 
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min

yy
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y i

norm



                                        … (9) 

In sediment concentration prediction, the challenge lies 

in the complexity of the factors influencing the 

suspended sediment concentration on a given day. Key 

variables include Rainfall patterns, runoff, soil 

properties, and vegetation, all of which necessitate 

careful consideration of time lags for accurate 

modeling. The methodology for developing predictive 

models involves utilizing various combinations of 

runoff data from both the present and the past several 

days—specifically runoff over the past one, two, and 

three days—as well as sediment concentration values 

from the previous one, two, and three days. This 

comprehensive approach aims to accurately output the 

current day's sediment concentration, highlighting the 

interconnected nature of hydrological processes in 

sediment transport. The formulation incorporates the 

input data's upper and lower bounds to normalize the 

variables, enhancing the model's predictive capability. 

 

  St = f (Qt, Qt-1, Qt-2, Qt-3, St-1, St-2, St-3)                      … (10) 

where St is the concentration of sediment at time t, t-1, 

t-2, and t-3, and Qt is the runoff. 

 

Table 1 Specifics of the MLR model for SSC and runoff 

forecasts 

Model Output-Input variables 

MLR-I 

(Runoff) 

Qt = a1 + b1Ht + c1Ht-1 + d1Ht-2 + e1Ht-3 + 

f1Qt-1 +   g1Qt-2   

MLR-II 

(SSC) 

St = a2 + b2Qt + c2Qt-1 + d2Qt-2 + e2Qt-3+ 

f2St-1  + g2St-2 + h2St-3 

 

In this document, the concept of (MLR) is presented 

through two models: MLR-I and MLR-II, which analyze 

the relationship between discharge and sediment levels 

over specified time periods. MLR-I utilizes input 

variables from current and previous days' stages, as 

well as discharges from prior days, to predict the 

current day's discharge. Specifically, the input variables 

for MLR-I include the discharge measurements from 

today, yesterday, two days ago, and three days ago, in 

addition to discharge values from the preceding one 

and two days, with the current day's discharge serving 

as the output. Conversely, MLR-II focuses on sediment 

levels, defining its output variable as the current day's 

sediment level. The input variables for this model 

encompass the current day's discharge, sediment levels 

from the current and previous days, and sediment 

values from the prior three days. This model similarly 

correlates the sediment levels to discharges observed 

over comparable time frames. 

 

To support the training and evaluating MLR, ANN, and 

ANFIS, a daily stage time series dataset is utilized. This 

dataset is structured with parameters Hij indexed by 

year (i = 1 to M) and day (j = 1 to N), where M 

symbolizes the total number of years and N the total 

number of days during the monsoon season. The 

detailed temporal arrangement of the dataset is critical 

for effectively capturing the underlying patterns in the 

observed discharge and sediment data. Likewise, the 

necessary daily runoff time series Qij, where i = 1 to M 

and j = 1 to N, were likewise accessible. N = 122 days 

(June 1st to September 30th) in a year and M = 12 years 

(2001-2012) were discovered for the Srikakulam 

location's Nagavali river basin. The necessary time 

series data for suspended sediment content and daily 

discharge were accessible. For the Nagavali river basin, 

it was found that M = 12 years (2001-2012) and N = 122 

days (June 1–September 30) every year. Neural 

networks with single and double hidden layers, which 

are ideally suited for nonlinear regression, were trained 

for the minimal error function using the back-

propagation technique. The quantity of neurons in 

every hidden layer varies depending on the ANN's 

structure and how well they converge to the intended 

result. Table 2 enumerates the training variables for the 

ANN model along with their assigned values.   

 

Table 2 Training variables and the values assigned to 

them for ANN 

Variables for training Assigned values 

Neural network type 
Feed forward back-

propagation 

Quantity of input 6 

Quantity of output 1 

Quantity of hidden 

layers 
1, 2 

Quantity of neurons in 

hidden layer 
1 to 55 

Total Quantity of layers 3, 4 

Training function Levenberg-Marquardt 

Transfer function in 

hidden layer 
Sigmoid 

Transfer function in 

output layer 
Pureline 

Maximum epoch 1000 

 

A variety of membership functions, such as triangular, 

trapezoidal, generalized bell, and Gaussian types, are 
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used by the (ANFIS). There are two to three different 

inputs for each function. A fuzzy model of the Takagi-

Sugeno-Kang type is used in the study, and training 

was done across 30 epochs the algorithm for back-

propagation learning is utilized to evaluate the 

effectiveness of model training. Using both training and 

testing datasets, statistical indicators were used to 

forecast runoff and suspended sediment concentration 

in the research area in order to assess model 

performance. Table 3 provides specific training 

variables for the ANFIS architecture along with their 

assigned values. 

 

Table 3 Training variables and the ANFIS models' 

assigned values 

Training variables Assigned values 

Input membership 

function type 

‘trimf’, ‘trapmf’, 

‘gbellmf’ and ‘gussmf’ 

Membership function 

based on input 
2 to 3 

Fuzzy model type Takagi Sugeno 

Epochs 30 

Learning algorithm Back-propagation 

 

Results and Discussion 
ANNs Based Runoff and (SSC) Prediction 

Models 
The Gamma test is utilized to establish the input 

parameters necessary for modeling runoff-sediment 

and stage-discharge, while eliminating models that 

increase complexity without significant changes to 

results. By employing the Gamma test, one can predict 

the minimum modeling error in advance. A data-

splitting technique facilitated the evaluation of the test's 

attributes, allowing for optimal input vector selection 

based on minimum gamma values, standard error, and 

V-ratio. Additionally, the research delved into optimal 

model selection and analyzed various input 

combinations to assess their effects on simulating 

runoff and (SSC).  

A systematic evaluation of 2n-1 meaningful 

combinations of inputs was conducted to identify the 

best prediction models for runoff and SSC, through 

analysis based on gamma, standard error, and V-ratio. 

In total, seven input parameters were included in the 

runoff prediction model: today's stage (Ht), along with 

the stages and runoff values from the previous three 

days (Ht-1, Ht-2, Ht-3, Qt-1, Qt-2, Qt-3). Similarly, the 

SSC prediction model considered runoff values from 

today and the preceding three days (Qt, Qt-1, Qt-2, Qt-

3), in conjunction with sediment values from the prior 

three days (St-1, St-2, St-3). The study ultimately 

examined 127 combinations for both models, finding 

that the optimal parameters for runoff prediction 

involved today's stage and the last two days of runoff, 

while the best parameters for SSC prediction 

incorporated today's runoff and sediment values from 

the previous two days. The models were implemented 

using (ANNs) designed in MATLAB (R2015a) to 

facilitate both runoff and SSC predictions. 

 

The runoff prediction model was structured to include 

varied input variables such as today's runoff 

measurements and those from the previous three days. 

The Levenberg-Marquardt learning algorithm was 

applied to both single and double hidden layers, 

pureline activation was used in the output layer, and 

log-sigmoid activation functions were used in the 

hidden layers. The training process was configured for 

up to 1000 epochs applying the feed-forward back-

propagation method. Model performance was 

evaluated through several statistical and hydrological 

metrics, including (RMSE), (r), (CE) and (PARE). 

Findings indicated that the architectures of (6-28-1) and 

(6-52-52-1) produced outstanding results, exhibiting 

superior correlation (r) and (CE) with a 

correspondingly lower RMSE compared to the other 

models assessed. 

 

ANN Based SSC Prediction Models 
 

The present study focuses on developing prediction 

models for (SSC) and runoff using (ANN) and (ANFIS) 

methodologies. For ANN models, inputs consisted of 

current and previous three days' runoff and sediment 

concentrations. The models employed a log-sigmoid 

activation function in hidden layers and a pureline 

activation function in the output layer, using the 

Levenberg-Marquardt learning algorithm up to 1000 

maximum epochs. The evaluation of the ANN 

performance relied on hydrological and statistical 

indices, namely RMSE, correlation coefficient (r), 

coefficient of efficiency (CE), and predictive accuracy 

(PARE), identifying networks such as (7-55-1) and (7-

30-30-1) as superior based on higher CE and r values 

along with lower RMSE. 

 

Further, ANFIS models were also constructed for the 

same outputs, utilizing present and prior day stage, 

discharge, and sediment data from the Nagavali river 

basin. The Takagi-Sugeno-Kang fuzzy inference system 

http://www.jweam.in/


Journal of Water Engineering and Management, Volume 05, No 02, 2024 

www.jweam.in 
27 

 
 

 

was deployed within ANFIS, with an epoch limit of 30  

 

for training optimal network configurations. Inputs for 

the ANFIS-based daily runoff prediction included 

current and previous three days' stage and runoff data, 

calibrated using a variety of membership functions 

(triangular, trapezoidal, Gaussian, and generalized 

bell), with the model structure confirmed through grid 

partitioning. The hybrid learning algorithm was 

utilized with an error tolerance of 0.001.  

 

Ultimately, for SSC prediction, similar input 

parameters were used, where the best inputs were 

identified through a gamma (Г) test, and the model 

structure was further refined using grid partitioning. 

During both methodologies, a parallel emphasis was 

placed on statistical performance metrics, leading to the 

conclusion that the triangular membership function 

with three input partitions exhibited the best 

performance for runoff prediction while also 

optimizing SSC predictions effectively. The 

effectiveness of the generated models for predicting 

suspended sediment concentration (SSC) was 

evaluated using a variety of statistical and hydrological 

indices. (RMSE), (r), and (CE) were important 

measurements. The most successful model for SSC 

prediction among the models examined was 

Triangular, 3, which showed the highest values for CE 

and r along with the lowest RMSE. 

 

MLR Based Runoff and SSC Prediction Models 
 

The study utilized the Multiple Linear Regression 

(MLR) technique to establish models for predicting 

daily runoff. The models incorporated several 

variables, including the current day's stage of water 

(Ht), the stage from the previous day (Ht-1), and the 

stages from the two and three days prior (Ht-2, Ht-3). 

Additionally, previous runoff values were considered: 

the runoff from the previous day (Qt-1) and the runoff 

from two days prior (Qt-2). Through this MLR 

approach, the researchers determined the coefficients of 

these independent variables and the necessary 

intercepts, thereby formulating a mathematical 

representation that aids in predicting daily runoff 

based on historical water stages and runoff levels. This 

method underscores the relevance of historical data in 

improving predictions for runoff, which is critical for 

water resource management and planning. 
Qt = a1 + b1Ht + c1Ht-1 + d1Ht-2 + e1Ht-3 + f1Qt-1 +  g1Qt-2  … (11) 

Table 4 displays the runoff prediction model's 

regression equation during the training phase.  

 

Table 4 MLR model for predicting runoff 

 

The creation of an MLR-based SSC model that 

combines runoff from the current day with sediment 

from the previous one, two, and three days is expressed 

as follows: 
St = a2 + b2Qt + c2Qt-1 + d2Qt-2 + e2Qt-3+ f2St-1 + g2St-2 + h2St-3

                                   … (12) 

Regression equation for MLR based SSC model is 

depicted in Table 5 during training period. 

 

Table 5 MLR model for predicting SSC 

 

The performance evaluation metrics for the runoff and 

SSC models that were developed using MLR displays 

Table 6. 

 

Table 6 Performance metrics for SSC and MLR-based 

runoff models 

Model RMSE r CE 

MLR-I (runoff) 36.895 

m3/sec 

0.967 0.931 

MLR-II (sediment) 0.502 g/l 0.835 0.696 

 

SRC-based Prediction Model for SSC 
The connection between sediment and river discharge 

is discussed in the text, with a particular emphasis on 

the impact of river discharge (represented by Qt) on 

suspended sediment concentration (SSC). This 

relationship was established by a regression study, 

which produced a power equation that is expressed as 

St = 0.2952 Qt^0.07810. This formula provides a 

mathematical representation of how changes in daily 

river discharge affect the amount of suspended silt. 

Furthermore, Table 7 displays the performance indices 

of the SRC model used to predict SSC, demonstrating 

the model's efficacy in predicting suspended sediment 

Models Model equations 

MLR-I 

(training) 

Qt = - 118.021 + 370.8057*Ht - 269.41*Ht-1 

- 14.2196*Ht-2 

- 11.8504*Ht-3 + 0.6872*Qt-1 + 0.0729*Qt- 2 

Models Model equation 

MLR-II 

(training) 

St = - 276.547 + 384.1661*Qt - 242.319*Qt-

1 + 18.2608*Qt-2 + 13.9898*Qt-3 + 

0.6463*St-1 - 0.01939*St-2 - 0.0828*St-3 
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levels based on the established relationship 

 

Table 7 Performance metrics for the SSC model based 

on SRC 

Model RMSE r CE 

SRC 0.733 g/l 0.731 0.620 

 

Performance Evaluation of Developed Models 
 

It has been demonstrated that the ANFIS model 

performs better at predicting runoff and SSC than both 

ANN and MLR models. Visual observations of the 

model's outputs lead to this conclusion. Several 

statistical and hydrological metrics, such as the (r), 

(RMSE), coefficient of efficiency (CE), and pooled 

average relative error (PARE), were used to evaluate 

the ANFIS model against its competitors. These metrics 

offer a thorough assessment of the models' efficacy and 

forecast accuracy in simulating intricate hydrological 

processes. For the ANN models predicting runoff, 

correlation coefficients during the training period 

(2001-2009) ranged from 0.995 for the (6-28-1) network, 

with a testing score of 0.979 repeating for the (6-52-52-

1) setup. In terms of SSC predictions, the calibration and 

validation phases offered values of r at 0.904 and 0.765 

for the (7-55-1) network, while the (7-30-30-1) network 

yielded 0.911 and 0.767, respectively.  

The study analyzes the performance of various 

predictive models, notably the ANFIS, MLR, ANN, and 

SRC, in forecasting runoff and SSC. The ANFIS 

(Triangular, 3) model demonstrated exceptional 

correlation coefficients of 0.997 and 0.988 during 

calibration and validation for runoff predictions, with 

corresponding r values of 0.941 and 0.779 during SSC 

training and testing. Conversely, the MLR-I model 

produced lower correlation coefficients of 0.967 for 

runoff during training and 0.964 during testing, while 

the MLR II model for SSC showed values of 0.835 and 

0.832. 

 In terms of RMSE, the ANFIS model excelled with 

values of 17.130 m³/s during calibration and 30.644 m³/s 

in validation for runoff predictions, alongside RMSEs 

of 0.307 m³/s and 0.113 m³/s for SSC training and testing 

periods, respectively. MLR-I's RMSE values for runoff 

were higher, at 36.895 m³/s during training and 53.063 

m³/s during testing, while for MLR-II SSC predictions, 

RMSE values were 0.502 m³/s and 0.121 m³/s. The SRC-

based SSC model yielded even lower correlation values, 

with RMSEs of 0.733 m³/s during training and 0.235 

m³/s for testing, indicating poorer predictive 

performance. 

A critical metric for evaluating these models is the CE. 

For the ANN runoff prediction model with network 

configuration (6-28-1), CE values were recorded at 0.989 

and 0.935 for calibration and validation. In contrast, the 

ANFIS runoff model reached CE values of 0.994 and 

0.966, while SSC predictions resulting CE values were 

lower compared to runoff but still indicative of good 

predictive performance at 0.886 and 0.775. In 

comparison, MLR-I and II showed CE values of 0.931 

and 0.824 for runoff and significantly lower values for 

SSC. Another important performance metric utilized 

was the PARE. The ANFIS runoff predictions 

demonstrated PARE values of 0.001% and 0.018%, 

indicating slight over-prediction during training and 

testing phases. MLR-I and II models also showed minor 

over-prediction tendencies, whereas SRC consistently 

yielded negative PARE values, indicating under-

prediction in both capacities. Thus, the results indicate 

that the ANFIS model generally outperforms its 

counterparts in terms of predictive accuracy and 

reliability for both runoff and SSC, evidenced by higher 

correlation coefficients, lower RMSE, superior CE 

values, and more favorable PARE statistics. 

 

Table 8 Performance assessments of created ANN, 

ANFIS, and MLR models for runoff forecasting 

throughout training and testing phases 
 

 

Model 

Training Testing 

RMS

E 

(m3/s 

) 

r CE PAR

E 

(%) 

RMSE 

(m3/s 

) 

r CE PAR

E 

(%) 

ANN (6-28-

1) 

22.973 0.99

5 

0.989 0.141 39.840 0.979 0.935 -0.994 

ANN (6-52-

52-1) 

22.565 0.99

5 

0.989 0.113 42.152 0.979 0.941 0.807 

ANFIS 

(Triangular, 

3) 

17.130 0.99

7 

0.994 0.001 30.644 0.988 0.966 0.018 

MLR-I 36.895 0.96

7 

0.931 0.006 53.063 0.964 0.823 0.117 

 

The models' performance evaluations showed that they 

could estimate silt and runoff with sufficient precision. 

The ANFIS model performed better in runoff 

prediction than the and MLR models, according to the 

qualitative evaluation generated from the graphs 

comparing observed against anticipated values of daily 
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runoff. The ANFIS model outperforms ANN, MLR, and 

SRC (Support Vector Regression) models for SSC 

prediction, according to the examination of daily SSC 

using corresponding scatter plots. 

 

Table 9 Performance assessments of created models 

for SSC prediction using ANN, ANFIS, MLR, and SRC 

during training and testing 

 
 

 

Model 

Training Testing 

RMS

E 

(g/l) 

 

R 

 

CE 

PARE 

(%) 

RMS

E 

(g/l) 

 

r 

 

CE 

PARE 

(%) 

ANN (7-55-1) 0.390 0.90

4 

0.816 -0.003 0.171 0.86

5 

0.73

6 

-0.130 

ANN (7-30-30-

1) 

0.376 0.91

1 

0.829 -0.001 0.146 0.86

8 

0.74

8 

-0.026 

ANFIS 

(Triangular, 3) 

0.307 0.94

1 

0.886 0.002 0.113 0.93

0 

0.77

5 

0.028 

MLR-II 0.501 0.83

5 

0.696 0.003 0.121 0.83

2 

0.69

1 

0.027 

SRC 0.733 0.73

1 

0.620 -0.023 0.235 0.72

9 

0.60

8 

-0.147 

 

Conclusions 
Soil is a vital natural resource for sustaining land 

productivity, particularly in regions dominated by 

subsistence agriculture such as the Nagavali River 

basin. Understanding sediment transport and runoff 

dynamics is crucial for effective watershed 

management. Hydrological prediction, however, 

remains challenging due to the stochastic nature of 

rainfall–runoff and sediment processes. In recent years, 

soft-computing techniques have emerged as robust 

alternatives to conventional methods, requiring fewer 

input data and capable of capturing complex nonlinear 

hydrological behaviour. In this study, the researchers 

aimed to model daily stage–discharge and runoff–

sediment relationships using various advanced 

methodologies, specifically ANN, ANFIS and MLR, in 

conjunction with a SRC approach. The research utilized 

data over a twelve-year period from 2001 to 2012, 

focused on the monsoon season, which included 

metrics such as stage, discharge, and suspended 

sediment concentration. This data was sourced from 

the WRIS and was strategically divided into training 

(2001–2009)and testing (2010–2012) datasets. 

 

The geographical focus of the study was the Nagavali 

basin, which spans 9,510 square kilometers across the 

states of Odisha (4,462 km²) and Andhra Pradesh (5,048 

km²). This basin experiences a mean annual rainfall of 

approximately 1131 mm, situated between the latitudes 

of 18°10'–19°44' N and longitudes of 82°52'–84°05'E. To 

develop the ANN models, a feed-forward back-

propagation method was employed, utilizing 

Levenberg–Marquardt training for optimization. In the 

case of the ANFIS models, grid partitioning methods 

were used along with triangular and Gaussian 

membership functions, complemented by a hybrid 

training approach. The MLR models were implemented 

using Microsoft Excel, while the SRC method adopted 

a power-law relationship to correlate runoff and 

suspended sediment concentration. The performance of 

these models was rigorously evaluated through several 

statistical measures, including RMSE, r, CE and PARE, 

ensuring a comprehensive assessment of model 

accuracy and reliability in predicting sediment 

dynamics within the basin. 

 

Key findings 
 Soft-computing models produced accurate stage–

discharge and runoff–sediment predictions. 

 Double-hidden-layer ANN models performed 

better than single-layer networks for both runoff 

and SSC. 

 ANFIS (Triangular, 3 MFs) achieved the best 

performance among all models for both runoff and 

SSC estimation. 

 MLR models showed acceptable performance, 

whereas the SRC method performed poorly for this 

basin, reflecting nonlinearity in sediment–runoff 

dynamics. 

 Current-day runoff and SSC were strongly 

dependent on antecedent flow and sediment 

conditions (up to three-day lag). 

 

ANFIS and ANN models demonstrated superior 

predictive capability over traditional regression and 

rating-curve methods, underscoring the effectiveness of 

intelligent, data-driven approaches in monsoon-

dominated hydrological basins. These techniques offer 

powerful tools for sediment–runoff forecasting and 

sustainable watershed management in similar tropical 

catchments. 
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