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Abstract

Flood forecasting plays a vital role in disaster management within water resources
engineering. This study evaluates the effectiveness of two data-driven approaches:
a Long Short-Term Memory (LSTM) recurrent neural network and a Random
Forest (RF) regression model for predicting river discharge using a publicly
available hydrological dataset. Historical streamflow data, including lagged flow
and precipitation variables, serve as inputs to the models. Performance metrics
such as root-mean-square error (RMSE), mean absolute error (MAE), Nash-
Sutcliffe efficiency (NSE), and coefficient of determination (R?) are employed for
model evaluation. Results indicate that the LSTM model exhibits superior
predictive performance, with lower RMSE and MAE and higher NSE and R?
values. These findings support the advantage of recurrent neural networks in
modelling temporal hydrological patterns.
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Introduction

thereby underscoring the urgent demand for reliable
flood forecasting systems (Xu et al., 2025). The critical

Floods remain among the most destructive natural
hazards, with severe socioeconomic and environmental
impacts. Effective forecasting of river discharge enables
timely flood warnings and supports water resource
management strategies (NOAA/NCEIL, 2025). The
escalating frequency and intensity of extreme
hydrological events, largely attributed to climate
change, necessitate advanced and accurate flood
forecasting methodologies to mitigate their devastating
impacts (Nearing et al., 2024). Traditional methods,
often rooted in hydrodynamic theories, have been
augmented by numerical models since the 1900s, with
a significant recent surge in artificial intelligence-based
approaches due to their computational efficiency and
predictive power (Dtissibe et al, 2023). This is
particularly crucial given the global rise in flood
occurrences, which consistently cause extensive
damage to both human lives and infrastructure,

role of real-time flood forecasting, especially in
vulnerable urban catchments, is to provide sufficient
lead time for emergency responses and safeguard at-
risk populations and infrastructure (Yi and Yi, 2024).
These systems are indispensable for informed decision-
making in sustainable urban development and for
implementing effective flood management strategies
(Yi and Yi, 2024; Aljohani et al., 2023). The advent of
machine learning models presents a promising avenue
for enhancing flood prediction capabilities, offering
rapid inference and flexible resolution that can be
integrated with interpretable physical models for
precise, real-time forecasts (Xu et al., 2025; Aljohani et
al.,, 2023). Machine learning and deep learning models
demonstrate enhanced accuracy and adaptability in
analyzing complex environmental and hydrological
datasets, identifying intricate patterns crucial for flood
risk prediction (Gaikwad, 2025). Jailani and
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Nurmadewi (2025) developed a hybrid flood prediction
model integrating LSTM and RF algorithms. Their
approach highlighted the LSTM model’s ability to
model sequential data and the RF model’s capacity to
identify key input features. He et al. (2025) applied
LSTM and Transformer-based architectures to the
CAMELS dataset, reporting enhanced predictive
performance over traditional models. Their study
confirmed that LSTM networks remain among the most
effective deep learning architectures in hydrology.
Cheng et al. (2022) used Random Forest models for
runoff simulation, demonstrating the model’s ability to
handle noisy data and extract meaningful relationships
between hydrological variables. Feature importance
measures derived from RF models provide valuable
insights into influential predictors, supporting variable
selection and model interpretation.

Recent studies have emphasized the growing relevance
of machine learning in flood risk prediction. Nearing et
al. (2024) and Dtissibe et al. (2023) underline the
urgency of adopting data-driven forecasting methods
in response to climate-induced increases in flood
frequency and severity. Xu et al. (2025) demonstrate the
efficiency of real-time ML-based flood forecasting
systems in urban environments. Yi and Yi (2024)
emphasize the importance of predictive systems in
managing vulnerable populations, while Aljohani et
al. (2023) advocate for the integration of ML with
interpretable hydrological models to enhance decision-
making. Gaikwad (2025) further confirms that deep
learning approaches outperform conventional models
by uncovering non-obvious relationships within
complex hydrological datasets. These studies
collectively indicate that both LSTM and RF models are
suitable for hydrological forecasting, with LSTM
excelling in sequence modelling and RF providing
transparency in predictor influence.

Materials and Methods

Description of Study Area

The selected study area for this research is a
representative ~ watershed from the CAMELS
(Catchment Attributes and Meteorology for Large-
sample Studies) dataset. This watershed is located in
the continental United States and is characterized by a
temperate climate, moderate to high seasonal
precipitation, and a well-monitored hydrological
network. The CAMELS dataset provides detailed
catchment attributes including topography, land cover,
soil properties, and long-term hydro-meteorological

variables, enabling robust model development and
validation. The chosen catchment spans a drainage area
of approximately 500-1500 square kilometers, making
it suitable for evaluating data-driven flood forecasting
models at the mesoscale. Daily discharge and
precipitation records from 2010 to 2019 are used in this
study, ensuring sufficient temporal resolution and
length for machine learning model training and testing.
The area exhibits both seasonal flood behavior and
episodic high-flow events, offering a diverse range of

hydrological conditions for evaluating model
performance. The study area's data integrity,
availability = of  multiple  hydrological  and

meteorological features, and prior inclusion in peer-
reviewed modeling studies contribute to its suitability
as a benchmark location for assessing the applicability
of machine learning techniques in flood prediction.

Data Description and Preprocessing

This study utilizes the CAMELS dataset (Catchment
Attributes and Meteorology for Large-sample Studies),
which provides daily discharge and meteorological
variables for U.S. watersheds (Addor et al., 2017). One
representative catchment is selected, encompassing a
10-year period (2010-2019). Preprocessing involves
handling missing values through interpolation and
normalizing features using z-score scaling. Lagged
variables are generated for streamflow (1 to 7 days) and
precipitation (1-day lag), forming the input feature set.
The target variable is the streamflow on day t. Data are
partitioned chronologically into training (70%) and
testing (30%) sets.

Model Development

This study utilizes two machine learning models Long
Short-Term Memory (LSTM) neural networks and
Random Forest (RF) regression to predict river
discharge using lagged hydrological variables derived
from the CAMELS dataset. Both models use the same
structured feature set to ensure comparability. The
input features are constructed using a lagging
approach, where streamflow and precipitation values
from the previous seven days are used to predict the
streamflow on the subsequent day. This technique
captures temporal dependencies, which are crucial in
hydrology where past precipitation and runoff
significantly ~influence current discharge levels.
Specifically, for each prediction at time ( t ), the model
inputs include streamflow values from (t —1)to (t —
7), and precipitation at ( t—1 ). This method
transforms the time-series data into a supervised
learning problem suitable for both sequential and non-
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sequential algorithms. The lag features are represented
mathematically as:

X = [Qt—l:Qt—Z, -"er—7,Pt—1]yt =0 1)
where, ( Q;) denotes streamflow and ( P, ) denotes
precipitation at time ( t ).

Long Short-Term Memory

The LSTM model in this study is developed using the
Keras framework running on a Tensor Flow backend.
As a variant of recurrent neural networks (RNNs),
LSTM is particularly effective for sequential prediction
tasks because its gating mechanisms allow it to retain
information from earlier time steps. The network is
designed to process sequences consisting of seven time
lags, each containing a single feature such as
streamflow or precipitation. The architecture includes
one LSTM layer with 50 units to learn temporal
patterns, followed by a dropout layer with a rate of 0.2
to reduce the risk of overfitting. A fully connected
output layer with a linear activation function is then
used to produce the final discharge estimate. Training
is carried out using the Adam optimizer with a learning
rate of 0.001, while Mean Squared Error (MSE) serves
as the loss function to emphasize larger prediction
errors. To enhance generalization, early stopping based
on validation performance is employed, preventing the
network from continuing training once overfitting
begins.

Random Forest

The Random Forest (RF) model in this study is
developed using the scikit-learn framework. In contrast
to the sequential nature of LSTM networks, RF is an
ensemble-based regression method that builds many
independent decision trees and produces predictions
by averaging their outputs. The model is initialized
with 100 trees, and the lagged values of streamflow and
precipitation are supplied as fixed input attributes,
allowing the algorithm to learn short-term hydrological
dependencies without requiring temporal recurrence.
To refine model performance, a grid-search cross-
validation procedure is used to identify suitable values
for parameters such as tree depth and the minimum
number of samples required for node splitting. Due to
its resistance to overfitting and its independence from
feature scaling, RF serves as a reliable
computationally efficient option for preliminary
hydrological forecasting tasks.

and

Performance Evaluation
To evaluate model performance, four standard
statistical indicators are used: Root Mean Square Error

(RMSE), Mean Absolute Error (MAE), Nash-Sutcliffe
Efficiency (NSE), and the Coefficient of Determination
(R?). RMSE reflects how much predicted values deviate
from observations by taking the square root of the
average squared error, making it highly responsive to
larger inaccuracies in the forecasts. MAE, on the other
hand, summarizes the average absolute difference
between simulated and observed values and is less
influenced by extreme errors. NSE is specifically
designed for hydrological modeling and compares the
predictive skill of a model to the mean of the observed
data; values approaching 1 indicate strong
performance, while values below 0 imply predictions
worse than using the mean as a baseline. R? represents
the fraction of the variability in observations that the
model can explain. Together, these indicators provide a
comprehensive assessment of accuracy, reliability, and
overall predictive strength, enabling a clear comparison
between the LSTM and Random Forest models. To
assess the performance of both models, four evaluation
metrics are employed:

¢ Root Mean Square Error (RMSE):
RMSE = ;3% (vi = 5)? @

RMSE penalizes large errors and provides a sense of
average deviation between observed and predicted
values.
e Mean Absolute Error (MAE):
MAE = =%, |y; = 3l 3)
MAE offers a straightforward interpretation of average
absolute prediction error.
¢ Nash-Sutcliffe Efficiency (NSE):
NSE = 1 — Zi=ma0im)® @)
T i-v)?

NSE values closer to 1 indicate strong predictive skill;
values below 0 suggest performance worse than the
mean.
o Coefficient of Determination (R?):

2 _ L 0i-?
=l o ©)
R? indicates the proportion of variance in the observed
data explained by the model.
Where, y; is the observed value, 7, is the predicted
value, y, is the mean of observed values and n is the
number of observations. These metrics gives a
comprehensive view of model performance, for both
accuracy and consistency in evaluating flood
forecasting models.

Results and Discussion
Table 1 provides a detailed summary of the
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performance evaluation metrics for both the LSTM and
Random Forest (RF) models applied to streamflow
prediction. The LSTM model demonstrated superior
predictive capability across all metrics. It achieved a
Root Mean Square Error (RMSE) of 4.2 m?/s, indicating
arelatively low average magnitude of prediction errors.
The Mean Absolute Error (MAE) was reported as 3.1
m?/s, reinforcing the model’s accuracy in capturing
day-to-day variations in streamflow. Furthermore, the
model attained a Nash-Sutcliffe Efficiency (NSE) of
0.76, suggesting that its predictive skill substantially
outperformed the mean of observed data. Additionally,
the coefficient of determination (R?) was 0.80, implying
that 80% of the variance in the observed streamflow
was effectively explained by the model. In contrast, the
Random Forest model exhibited higher RMSE and
MAE values, indicating larger prediction errors, and
recorded lower NSE and R? scores, reflecting weaker
predictive performance and less explanatory power
relative to the LSTM model. Feature importance
analysis from the RF model indicates that streamflow at
lag t-1 is the most influential predictor, followed by
other recent lags and precipitation. This aligns with
hydrological knowledge, where recent flows heavily
influence future discharge. The training and validation
accuracy curves for both models are shown in Figures 2
and 3. These plots provide insights into the models’
learning dynamics over training epochs. The LSTM
model (Fig. 2) exhibits a consistent upward trend in
both training and validation accuracy, suggesting that
it successfully captures temporal dependencies in the
data without overfitting. The narrowing gap between
the two curves further indicates strong generalization
capability. Similarly, the Random Forest model (Figure
3) shows steadily improving training and validation
accuracy. Although the RF model is not inherently
epoch-based, pseudo-epochs were simulated to
monitor its performance during iterative training
rounds. Overall, both models effectively learned from
the data, with the LSTM model showing comparatively
higher and more stable validation performance,
making it more suitable for reliable streamflow
forecasting.

Table 1 Performance metrics of LSTM and RF

Model RMSE MAE NSE | R?
(m%/s) (m3/s)

LSTM 4.2 3.1 0.76 | 0.80

Random | 5.0 3.8 0.68 | 0.72

Forest

Feature Importance in Random Forest Model
Flow t-1
Flow t-2
Flow t-3
Flow t-4
Flow t-5
Flow t-6
Flow t-7

Precip t-1

0.00 0.05 0.10 0.15 0.20 0.25
Importance Score

Fig. 1 Feature importance in random forest model
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Fig. 2 LSTM training and validation accuracy.

Random Forest Training vs Validation Accuracy

0,85} = RF Training Accuracy
RF Validation Accuracy

0.80
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Accuracy
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Fig. 3 Random Forest training and validation accuracy.

Conclusions

This study evaluated the effectiveness of two machine
learning models Long Short-Term Memory (LSTM)
networks and Random Forest (RF) regression in
forecasting daily streamflow using lagged hydro
meteorological data from a representative CAMELS
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catchment. The primary goal was to assess each model’s
predictive performance, learning behavior, and
practical applicability for hydrological forecasting
tasks. The LSTM model demonstrated superior
accuracy across all evaluation metrics, including RMSE,
MAE, NSE, and R2 Its ability to model sequential
dependencies and capture nonlinear patterns inherent
in streamflow dynamics enabled more reliable
predictions. These findings are consistent with the
literature, notably the work of He et al. (2025) and
Jailani and Nurmadewi (2025), who also reported
strong performance of LSTM in similar hydrological
forecasting scenarios. The model's learning curves
showed stable convergence without overfitting, as
indicated by the close alignment of training and
validation accuracy. This stability underscores the
model’s generalization capability when applied to
unseen data. Conversely, while the RF model yielded
slightly lower performance scores, it remains a valuable
alternative, especially when interpretability and
computational simplicity are prioritized. The RF
algorithm provided meaningful insights through
feature importance rankings, highlighting the
dominant influence of recent streamflow and
precipitation in shaping forecast outcomes. Such
interpretability is crucial for water resource managers
seeking to understand key hydrological drivers
without the complexity of deep learning architectures.

A notable insight from this study is the potential
synergy between these models. The complementary
strengths of LSTM and RF —temporal learning versus
feature interpretability —suggest that hybrid or
ensemble frameworks could enhance predictive
robustness and offer more nuanced forecast tools.
Future research could explore stacking or blending
strategies that combine sequence models with tree-
based learners for comprehensive flood prediction
solutions. Despite these promising results, certain
limitations should be acknowledged. The analysis was
confined to a single catchment and utilized daily-
resolution data, which may not be sensitive to short-
term or flash flood events. This limits the applicability
of the findings to broader hydrological contexts.
Additionally, the modeling framework did not
incorporate other influential variables such as
temperature, snowmelt, or soil moisture, which could
further enhance prediction accuracy. In conclusion, this
study affirms the efficacy of LSTM networks for
hydrological time series forecasting, particularly when
temporal resolution and nonlinear interactions are
critical. The RF model, while less accurate, provides

valuable insights and serves as a reliable baseline.
Together, these models offer a strong foundation for
future development of intelligent flood forecasting
systems. Expanding this work to multiple catchments,
incorporating higher-frequency data, and exploring
hybrid modeling strategies represent promising
directions for advancing machine learning applications
in civil and water resources engineering.
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