
www.jweam.in 39 

 

 Open Access Journal of Water Engineering and Management 

Volume 6 Issue 3 

Research Article 
ISSN: 2582-6298 

Machine Learning-Based Streamflow Prediction for Hydrological Applications: A 

Case Study with LSTM and Random Forest 
Mehar Arfi1*, Shohrat Ali2*, S.C. Yadav3* 

1*,3* Department of Computer Science and Engineering, Central University of Jharkhand, Ranchi, India 
2* Department of Civil Engineering, Central University of Jharkhand, Ranchi, India 

 
 

Article Info 
 

 

Article History: 

Received on:     October 29, 2025 

Revised on:     November 10,2025 

Accepted on:   December 3, 2025 

Published on: December 31, 2025 

Published by Academic Hope 
 

*Corresponding author Mehar Arfi, 

Shohrat Ali, S.C. Yadav 

Email:mehar@cuj.ac.in, 

shohrat.ali@cuj.ac.in, dr.scyadav@cuj.ac.in 

 

 

 

How to Cite:  

Arfi, M., Ali, S. and Yadav, S. C., 2025. 

Machine Learning-Based Streamflow 

Prediction for Hydrological Applications: 

A Case Study with LSTM and Random 

Forest, Journal of Water Engineering and 

Management 6(3):39-44.  
DOI:https://doi.org/10.47884/jweam.v6i3p

p39-44

Abstract 
 

 

Flood forecasting plays a vital role in disaster management within water resources 

engineering. This study evaluates the effectiveness of two data-driven approaches: 

a Long Short-Term Memory (LSTM) recurrent neural network and a Random 

Forest (RF) regression model for predicting river discharge using a publicly 

available hydrological dataset. Historical streamflow data, including lagged flow 

and precipitation variables, serve as inputs to the models. Performance metrics 

such as root-mean-square error (RMSE), mean absolute error (MAE), Nash–

Sutcliffe efficiency (NSE), and coefficient of determination (R²) are employed for 

model evaluation. Results indicate that the LSTM model exhibits superior 

predictive performance, with lower RMSE and MAE and higher NSE and R² 

values. These findings support the advantage of recurrent neural networks in 

modelling temporal hydrological patterns. 
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Introduction 
Floods remain among the most destructive natural 

hazards, with severe socioeconomic and environmental 

impacts. Effective forecasting of river discharge enables 

timely flood warnings and supports water resource 

management strategies (NOAA/NCEI, 2025). The 

escalating frequency and intensity of extreme 

hydrological events, largely attributed to climate 

change, necessitate advanced and accurate flood 

forecasting methodologies to mitigate their devastating 

impacts (Nearing et al., 2024). Traditional methods, 

often rooted in hydrodynamic theories, have been 

augmented by numerical models since the 1900s, with 

a significant recent surge in artificial intelligence-based 

approaches due to their computational efficiency and 

predictive power (Dtissibe et al., 2023). This is 

particularly crucial given the global rise in flood 

occurrences, which consistently cause extensive 

damage to both human lives and infrastructure, 

thereby underscoring the urgent demand for reliable 

flood forecasting systems (Xu et al., 2025). The critical 

role of real-time flood forecasting, especially in 

vulnerable urban catchments, is to provide sufficient 

lead time for emergency responses and safeguard at-

risk populations and infrastructure (Yi and Yi, 2024). 

These systems are indispensable for informed decision-

making in sustainable urban development and for 

implementing effective flood management strategies 

(Yi and Yi, 2024; Aljohani et al., 2023). The advent of 

machine learning models presents a promising avenue 

for enhancing flood prediction capabilities, offering 

rapid inference and flexible resolution that can be 

integrated with interpretable physical models for 

precise, real-time forecasts (Xu et al., 2025; Aljohani et 

al., 2023). Machine learning and deep learning models 

demonstrate enhanced accuracy and adaptability in 

analyzing complex environmental and hydrological 

datasets, identifying intricate patterns crucial for flood 

risk prediction (Gaikwad, 2025). Jailani and 
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Nurmadewi (2025) developed a hybrid flood prediction 

model integrating LSTM and RF algorithms. Their 

approach highlighted the LSTM model’s ability to 

model sequential data and the RF model’s capacity to 

identify key input features. He et al. (2025) applied 

LSTM and Transformer-based architectures to the 

CAMELS dataset, reporting enhanced predictive 

performance over traditional models. Their study 

confirmed that LSTM networks remain among the most 

effective deep learning architectures in hydrology. 

Cheng et al. (2022) used Random Forest models for 

runoff simulation, demonstrating the model’s ability to 

handle noisy data and extract meaningful relationships 

between hydrological variables. Feature importance 

measures derived from RF models provide valuable 

insights into influential predictors, supporting variable 

selection and model interpretation. 

 

Recent studies have emphasized the growing relevance 

of machine learning in flood risk prediction. Nearing et 

al. (2024) and Dtissibe et al. (2023) underline the 

urgency of adopting data-driven forecasting methods 

in response to climate-induced increases in flood 

frequency and severity. Xu et al. (2025) demonstrate the 

efficiency of real-time ML-based flood forecasting 

systems in urban environments. Yi and Yi (2024) 

emphasize the importance of predictive systems in 

managing vulnerable populations, while Aljohani et 

al. (2023) advocate for the integration of ML with 

interpretable hydrological models to enhance decision-

making. Gaikwad (2025) further confirms that deep 

learning approaches outperform conventional models 

by uncovering non-obvious relationships within 

complex hydrological datasets. These studies 

collectively indicate that both LSTM and RF models are 

suitable for hydrological forecasting, with LSTM 

excelling in sequence modelling and RF providing 

transparency in predictor influence. 

 

Materials and Methods 
Description of Study Area 
The selected study area for this research is a 

representative watershed from the CAMELS 

(Catchment Attributes and Meteorology for Large-

sample Studies) dataset. This watershed is located in 

 the continental United States and is characterized by a 

temperate climate, moderate to high seasonal 

precipitation, and a well-monitored hydrological 

network. The CAMELS dataset provides detailed 

catchment attributes including topography, land cover, 

soil properties, and long-term hydro-meteorological 

variables, enabling robust model development and 

validation. The chosen catchment spans a drainage area 

of approximately 500–1500 square kilometers, making 

it suitable for evaluating data-driven flood forecasting 

models at the mesoscale. Daily discharge and 

precipitation records from 2010 to 2019 are used in this 

study, ensuring sufficient temporal resolution and 

length for machine learning model training and testing. 

The area exhibits both seasonal flood behavior and 

episodic high-flow events, offering a diverse range of 

hydrological conditions for evaluating model 

performance. The study area's data integrity, 

availability of multiple hydrological and 

meteorological features, and prior inclusion in peer-

reviewed modeling studies contribute to its suitability 

as a benchmark location for assessing the applicability 

of machine learning techniques in flood prediction. 

 

Data Description and Preprocessing  
This study utilizes the CAMELS dataset (Catchment 

Attributes and Meteorology for Large-sample Studies), 

which provides daily discharge and meteorological 

variables for U.S. watersheds (Addor et al., 2017). One 

representative catchment is selected, encompassing a 

10-year period (2010–2019). Preprocessing involves 

handling missing values through interpolation and 

normalizing features using z-score scaling. Lagged 

variables are generated for streamflow (1 to 7 days) and 

precipitation (1-day lag), forming the input feature set. 

The target variable is the streamflow on day t. Data are 

partitioned chronologically into training (70%) and 

testing (30%) sets. 

 

Model Development 
This study utilizes two machine learning models Long 

Short-Term Memory (LSTM) neural networks and 

Random Forest (RF) regression to predict river 

discharge using lagged hydrological variables derived 

from the CAMELS dataset. Both models use the same 

structured feature set to ensure comparability. The 

input features are constructed using a lagging 

approach, where streamflow and precipitation values 

from the previous seven days are used to predict the 

streamflow on the subsequent day. This technique 

captures temporal dependencies, which are crucial in 

hydrology where past precipitation and runoff 

significantly influence current discharge levels. 

Specifically, for each prediction at time ( 𝑡 ), the model 

inputs include streamflow values from ( 𝑡 − 1 ) to ( 𝑡 −

7 ), and precipitation at ( 𝑡 − 1 ). This method 

transforms the time-series data into a supervised 

learning problem suitable for both sequential and non-
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sequential algorithms. The lag features are represented 

mathematically as: 

𝑋𝑡 = [𝑄𝑡−1, 𝑄𝑡−2, … , 𝑄𝑡−7,𝑃𝑡−1]𝑦𝑡 = 𝑄𝑡                           (1) 

where, ( 𝑄𝑡) denotes streamflow and ( 𝑃𝑡 ) denotes 

precipitation at time ( 𝑡 ). 

 

Long Short-Term Memory 
The LSTM model in this study is developed using the 

Keras framework running on a Tensor Flow backend. 

As a variant of recurrent neural networks (RNNs), 

LSTM is particularly effective for sequential prediction 

tasks because its gating mechanisms allow it to retain 

information from earlier time steps. The network is 

designed to process sequences consisting of seven time 

lags, each containing a single feature such as 

streamflow or precipitation. The architecture includes 

one LSTM layer with 50 units to learn temporal 

patterns, followed by a dropout layer with a rate of 0.2 

to reduce the risk of overfitting. A fully connected 

output layer with a linear activation function is then 

used to produce the final discharge estimate. Training 

is carried out using the Adam optimizer with a learning 

rate of 0.001, while Mean Squared Error (MSE) serves 

as the loss function to emphasize larger prediction 

errors. To enhance generalization, early stopping based 

on validation performance is employed, preventing the 

network from continuing training once overfitting 

begins. 

 

Random Forest 
The Random Forest (RF) model in this study is 

developed using the scikit-learn framework. In contrast 

to the sequential nature of LSTM networks, RF is an 

ensemble-based regression method that builds many 

independent decision trees and produces predictions 

by averaging their outputs. The model is initialized 

with 100 trees, and the lagged values of streamflow and 

precipitation are supplied as fixed input attributes, 

allowing the algorithm to learn short-term hydrological 

dependencies without requiring temporal recurrence. 

To refine model performance, a grid-search cross-

validation procedure is used to identify suitable values 

for parameters such as tree depth and the minimum 

number of samples required for node splitting. Due to 

its resistance to overfitting and its independence from 

feature scaling, RF serves as a reliable and 

computationally efficient option for preliminary 

hydrological forecasting tasks. 

 

Performance Evaluation 
To evaluate model performance, four standard 

statistical indicators are used: Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Nash–Sutcliffe 

Efficiency (NSE), and the Coefficient of Determination 

(R²). RMSE reflects how much predicted values deviate 

from observations by taking the square root of the 

average squared error, making it highly responsive to 

larger inaccuracies in the forecasts. MAE, on the other 

hand, summarizes the average absolute difference 

between simulated and observed values and is less 

influenced by extreme errors. NSE is specifically 

designed for hydrological modeling and compares the 

predictive skill of a model to the mean of the observed 

data; values approaching 1 indicate strong 

performance, while values below 0 imply predictions 

worse than using the mean as a baseline. R² represents 

the fraction of the variability in observations that the 

model can explain. Together, these indicators provide a 

comprehensive assessment of accuracy, reliability, and 

overall predictive strength, enabling a clear comparison 

between the LSTM and Random Forest models. To 

assess the performance of both models, four evaluation 

metrics are employed: 

 

  Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

2
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1                                                      (2) 

RMSE penalizes large errors and provides a sense of 

average deviation between observed and predicted 

values. 

 Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖

𝑛
𝑖=1 − 𝑦𝑖̂|                      (3) 

MAE offers a straightforward interpretation of average 

absolute prediction error. 

 Nash–Sutcliffe Efficiency (NSE): 

𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦𝑖̅̅̅)2𝑛
𝑖=1

    (4) 

NSE values closer to 1 indicate strong predictive skill; 

values below 0 suggest performance worse than the 

mean. 

 Coefficient of Determination (R²): 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦𝑖̅̅̅)2𝑛
𝑖=1

                            (5) 

R² indicates the proportion of variance in the observed 

data explained by the model. 

Where, 𝑦𝑖  is the observed value, 𝑦𝑖̂ is the predicted 

value, 𝑦𝑖̅ is the mean of observed values and 𝑛 is the 

number of observations. These metrics gives a 

comprehensive view of model performance, for both 

accuracy and consistency in evaluating flood 

forecasting models. 
 

Results and Discussion 
Table 1 provides a detailed summary of the 
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performance evaluation metrics for both the LSTM and 

Random Forest (RF) models applied to streamflow 

prediction. The LSTM model demonstrated superior 

predictive capability across all metrics. It achieved a 

Root Mean Square Error (RMSE) of 4.2 m³/s, indicating 

a relatively low average magnitude of prediction errors. 

The Mean Absolute Error (MAE) was reported as 3.1 

m³/s, reinforcing the model’s accuracy in capturing 

day-to-day variations in streamflow. Furthermore, the 

model attained a Nash–Sutcliffe Efficiency (NSE) of 

0.76, suggesting that its predictive skill substantially 

outperformed the mean of observed data. Additionally, 

the coefficient of determination (R²) was 0.80, implying 

that 80% of the variance in the observed streamflow 

was effectively explained by the model. In contrast, the 

Random Forest model exhibited higher RMSE and 

MAE values, indicating larger prediction errors, and 

recorded lower NSE and R² scores, reflecting weaker 

predictive performance and less explanatory power 

relative to the LSTM model. Feature importance 

analysis from the RF model indicates that streamflow at 

lag t–1 is the most influential predictor, followed by 

other recent lags and precipitation. This aligns with 

hydrological knowledge, where recent flows heavily 

influence future discharge. The training and validation 

accuracy curves for both models are shown in Figures 2 

and 3. These plots provide insights into the models’ 

learning dynamics over training epochs. The LSTM 

model (Fig. 2) exhibits a consistent upward trend in 

both training and validation accuracy, suggesting that 

it successfully captures temporal dependencies in the 

data without overfitting. The narrowing gap between 

the two curves further indicates strong generalization 

capability. Similarly, the Random Forest model (Figure 

3) shows steadily improving training and validation 

accuracy. Although the RF model is not inherently 

epoch-based, pseudo-epochs were simulated to 

monitor its performance during iterative training 

rounds. Overall, both models effectively learned from 

the data, with the LSTM model showing comparatively 

higher and more stable validation performance, 

making it more suitable for reliable streamflow 

forecasting. 

Table 1 Performance metrics of LSTM and RF 

 

Fig. 1 Feature importance in random forest model 

 

Fig. 2 LSTM training and validation accuracy. 

 

Fig. 3 Random Forest training and validation accuracy. 

 

Conclusions 
This study evaluated the effectiveness of two machine 

learning models Long Short-Term Memory (LSTM) 

networks and Random Forest (RF) regression in 

forecasting daily streamflow using lagged hydro 

meteorological data from a representative CAMELS 

Model RMSE 

(m³/s) 

MAE 

(m³/s) 

NSE R² 

LSTM 4.2 3.1 0.76 0.80 

Random 

Forest 

5.0 3.8 0.68 0.72 
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catchment. The primary goal was to assess each model’s 

predictive performance, learning behavior, and 

practical applicability for hydrological forecasting 

tasks. The LSTM model demonstrated superior 

accuracy across all evaluation metrics, including RMSE, 

MAE, NSE, and R². Its ability to model sequential 

dependencies and capture nonlinear patterns inherent 

in streamflow dynamics enabled more reliable 

predictions. These findings are consistent with the 

literature, notably the work of He et al. (2025) and 

Jailani and Nurmadewi (2025), who also reported 

strong performance of LSTM in similar hydrological 

forecasting scenarios. The model's learning curves 

showed stable convergence without overfitting, as 

indicated by the close alignment of training and 

validation accuracy. This stability underscores the 

model’s generalization capability when applied to 

unseen data. Conversely, while the RF model yielded 

slightly lower performance scores, it remains a valuable 

alternative, especially when interpretability and 

computational simplicity are prioritized. The RF 

algorithm provided meaningful insights through 

feature importance rankings, highlighting the 

dominant influence of recent streamflow and 

precipitation in shaping forecast outcomes. Such 

interpretability is crucial for water resource managers 

seeking to understand key hydrological drivers 

without the complexity of deep learning architectures. 

 

A notable insight from this study is the potential 

synergy between these models. The complementary 

strengths of LSTM and RF—temporal learning versus 

feature interpretability—suggest that hybrid or 

ensemble frameworks could enhance predictive 

robustness and offer more nuanced forecast tools. 

Future research could explore stacking or blending 

strategies that combine sequence models with tree-

based learners for comprehensive flood prediction 

solutions. Despite these promising results, certain 

limitations should be acknowledged. The analysis was 

confined to a single catchment and utilized daily-

resolution data, which may not be sensitive to short-

term or flash flood events. This limits the applicability 

of the findings to broader hydrological contexts. 

Additionally, the modeling framework did not 

incorporate other influential variables such as 

temperature, snowmelt, or soil moisture, which could 

further enhance prediction accuracy. In conclusion, this 

study affirms the efficacy of LSTM networks for 

hydrological time series forecasting, particularly when 

temporal resolution and nonlinear interactions are 

critical. The RF model, while less accurate, provides 

valuable insights and serves as a reliable baseline. 

Together, these models offer a strong foundation for 

future development of intelligent flood forecasting 

systems. Expanding this work to multiple catchments, 

incorporating higher-frequency data, and exploring 

hybrid modeling strategies represent promising 

directions for advancing machine learning applications 

in civil and water resources engineering. 
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